Question

Suppose that we wish to test H0: µ = 20 versus H1: µ ≠ 20, where...

Suppose that we wish to test H0: µ = 20 versus H1: µ ≠ 20, where σ is known to equal 7. Also, suppose that a sample of n = 49 measurements randomly selected from the population has a mean of 18.

  1. Calculate the value of the test statistic Z.
  2. By comparing Z with a critical value, test H0 versus H1 at α = 0.05.
  3. Calculate the p-value for testing H0 versus H1.
  4. Use the p-value to test H0 versus H1at each of α =0.10, 0.05, 0.01, and 0.001.
  5. How much evidence is there that H0: µ = 20 is false?

Answers should be in word version

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
H0: µ ≥ 205 versus H1:µ < 205, x= 198, σ= 15, n= 20, α= 0.05...
H0: µ ≥ 205 versus H1:µ < 205, x= 198, σ= 15, n= 20, α= 0.05 test statistic___________        p-value___________      Decision (circle one)        Reject the H0       Fail to reject the H0 H0: µ = 26 versus H1: µ<> 26,x= 22, s= 10, n= 30, α= 0.01 test statistic___________        p-value___________      Decision (circle one)        Reject the H0       Fail to reject the H0 H0: µ ≥ 155 versus H1:µ < 155, x= 145, σ= 19, n= 25, α= 0.01 test statistic___________        p-value___________      Decision (circle one)        Reject the H0       Fail to reject the H0
H0: µ ≥ 20 versus H1: µ < 20, α = 0.05, sample mean = 19,...
H0: µ ≥ 20 versus H1: µ < 20, α = 0.05, sample mean = 19, σ = 5, n = 25
We wish to test H0: μ = 120 versus Ha: μ ¹ 120, where ? is...
We wish to test H0: μ = 120 versus Ha: μ ¹ 120, where ? is known to equal 14. The sample of n = 36 measurements randomly selected from the population has a mean of ?̅ = 15. a. Calculate the value of the test statistic z. b. By comparing z with a critical value, test H0 versus Ha at ? = .05.
. Consider the following hypothesis test: H0 : µ ≥ 20 H1 : µ < 20...
. Consider the following hypothesis test: H0 : µ ≥ 20 H1 : µ < 20 A sample of 40 observations has a sample mean of 19.4. The population standard deviation is known to equal 2. (a) Test this hypothesis using the critical value approach, with significance level α = 0.01. (b) Suppose we repeat the test with a new significance level α ∗ > 0.01. For each of the following quantities, comment on whether it will change, and if...
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of...
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of size n=25 is obtained from a population that is known to be normally distributed with sigma=6. . The researcher decides to test this hypothesis at the α =0.1 level of significance, determine the critical value. b. The sample mean is determined to be x-bar=42.3, compute the test statistic z=??? c. Draw a normal curve that depicts the critical region and declare if the null...
7. Suppose you are testing H0 : µ = 10 vs H1 : µ 6= 10....
7. Suppose you are testing H0 : µ = 10 vs H1 : µ 6= 10. The sample is small (n = 5) and the data come from a normal population. The variance, σ 2 , is unknown. (a) Find the critical value(s) corresponding to α = 0.10. (b) You find that t = −1.78. Based on your critical value, what decision do you make regarding the null hypothesis (i.e. do you Reject H0 or Do Not Reject H0)?
We want to test H0 : µ ≤ 120 versus Ha : µ > 120 ....
We want to test H0 : µ ≤ 120 versus Ha : µ > 120 . We know that n = 324, x = 121.100 and, σ = 9. We want to test H0 at the .05 level of significance. For this problem, round your answers to 3 digits after the decimal point. 1. What is the value of the test statistic? 2. What is the critical value for this test? 3. Using the critical value, do we reject or...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample size of n = 25. Calculate bounds on the P -value for the following observed values of the test statistic (use however many decimal places presented in the look-up table. Answers are exact): (h) upper bound upon t0 = -1.3. THE ANSWER IS NOT 0.15 OR 0.05
To test H0: σ=70 versus H1: σ<70​, a random sample of size n equals 25 is...
To test H0: σ=70 versus H1: σ<70​, a random sample of size n equals 25 is obtained from a population that is known to be normally distributed. ​(a) If the sample standard deviation is determined to be s equals = 46.5​, compute the test statistic. ​(b) If the researcher decides to test this hypothesis at α=0.05 level of​ significance, use technology to determine the​ P-value. ​(c) Will the researcher reject the null​ hypothesis? What is the P-Value?
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample...
In order to test HO: µ0 = 40 versus H1: µ ≠ 40, a random sample of size n = 25 is obtained from a normal population with a known σ = 6. My x-BAR mean is 42.3 from my sample. Using a TI 83/84 calculator, calculate my P-value with the appropriate Hypothesis Test.                                   Use a critical level α = 0.10 and decide to Accept or Reject HO with the valid reason for the decision. Group of answer choices My...