Question

Find the joint discrete random variable x and y,their joint probability mass function is given by...

Find the joint discrete random variable x and y,their joint probability mass function is given by Px,y(x,y)={k(x+y) x=-2,0,+2,y=-1,0,+1

0 Otherwise }

2.1 determine the value of constant k,such that this will be proper pmf?

2.2 find the marginal pmf’s,Px(x) and Py(y)?

2.3 obtain the expected values of random variables X and Y?

2.4 calculate the variances of X and Y?

Homework Answers

Answer #1

thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the joint discrete random variable x and y,their joint probability mass function is given by...
Find the joint discrete random variable x and y,their joint probability mass function is given by Px,y(x,y)={k(x+y);x=-2,0,+2,y=-1,0,+1 K>0    0 Otherwise }    2.1 determine the value of constant k,such that this will be proper pmf? 2.2 find the marginal pmf’s,Px(x) and Py(y)? 2.3 obtain the expected values of random variables X and Y? 2.4 calculate the variances of X and Y? Hint:££Px,y(x,y)=1,Px(x)=£Px,y(x,y);Py(y)=£Px,y(. x,y);E[]=£xpx(x);
Let X and Y be discrete random variables, their joint pmf is given as Px,y =...
Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ? + 2)/(B + 2) for 0 ≤ X < 3, 0 ≤ Y < 3 Where B=2. a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 2
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf...
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ?)/(B + 1) for 0 < X ≤ 3, 0 < Y ≤ 3 (Where B=5) a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 2
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf...
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ? − 2)/(B + 1) for 1 < X ≤ 4, 1 < Y ≤ 4 (Where B=2) a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 3
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf...
SOLUTION REQUIRED WITH COMPLETE STEPS Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ? + 1)/(B + 1) for 0 ≤ X < 3, 0 ≤ Y < 3 (Where B=7) a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 1
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x!...
If X and Y are discrete random variables with joint PMF P(X,Y )(x, y) = c(2x+y)(x! y!) for x = 0, 1, 2, … and y = 0, 1, 2, … and zero otherwise a) Find the constant c. b) Find the marginal PMFs of X and Y. Identify their distribution along with their parameters. c) Are X and Y independent? Why/why not?
Let X and Y be discrete random variables, their joint pmf is given as ?(x,y)= ?(?...
Let X and Y be discrete random variables, their joint pmf is given as ?(x,y)= ?(? + ? − 2)/(B + 1) for 1 < X ≤ 4, 1 < Y ≤ 4 Where B is the last digit of your registration number ( B=3) a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 3
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero...
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise. 1. Find the constant, c, such that f(x,y) is a valid pmf. 2. Find the marginal distributions for X and Y . 3. Find the marginal means for both random variables. 4. Find the marginal variances for both random variables. 5. Find the correlation of X and Y . 6. Are the two variables independent? Justify.
Let X be a discrete random variable with probability mass function (pmf) P (X = k)...
Let X be a discrete random variable with probability mass function (pmf) P (X = k) = C *ln(k) for k = e; e^2 ; e^3 ; e^4 , and C > 0 is a constant. (a) Find C. (b) Find E(ln X). (c) Find Var(ln X).
Consider a joint probability function for discrete random variables X and Y. To get the marginal...
Consider a joint probability function for discrete random variables X and Y. To get the marginal probability function for X: Select one: a. We set x equal to 1. b. For each value y, we sum the joint probability function over all the values of x. c. We set y equal to 1. d. For each value x, we sum the joint probability function over all the values of y.