Question

Y is a random variable pdf h(y) = (1/(y+ theta)^3) * 2 * theta^2 y >0,...

Y is a random variable pdf

h(y) = (1/(y+ theta)^3) * 2 * theta^2 y >0, theta >0

Using a single observation, test

H_0 : Theta = 1

H_a : theta > 1

Find a uniformly most power critical region for test if alpha = .05

Then find the power of test if theta = 2.5

Homework Answers

Answer #1

hii...if you have any doubt please ask by comment. please click on like ? button. thanks..?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Y is a random variable with pdf f(y;theta) = ((1- y) ^ theta ) * (theta...
Y is a random variable with pdf f(y;theta) = ((1- y) ^ theta ) * (theta + 1) 0 < y < 0, theta > 0 Find sufficient statistic and UMVUE for theta given E(ln(1 - y)) = - 1/theta + 1
Given random variable Y, E(Y) = theta Var(Y) = (theta^2)/50 theta hat = bY where b<...
Given random variable Y, E(Y) = theta Var(Y) = (theta^2)/50 theta hat = bY where b< 1 MSE(theta hat) = (11 * theta^2)/512 Find b
Suppose the random variable (X, Y ) has a joint pdf for the form ?cxy 0≤x≤1,0≤y≤1...
Suppose the random variable (X, Y ) has a joint pdf for the form ?cxy 0≤x≤1,0≤y≤1 f(x,y) = . 0 elsewhere (a) (5 pts) Find c so that f is a valid distribution. (b) (6 pts) Find the marginal distribution, g(x) for X and the marginal distribution for Y , h(y). (c) (6 pts) Find P (X > Y ). (d) (6 pts) Find the pdf of X +Y. (e) (6 pts) Find P (Y < 1/2|X > 1/2). (f)...
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If...
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If Y = (X - 2)^2 Find E|Y| Var|Y|
Let Y_1, … , Y_n be a random sample from a normal distribution with unknown mu...
Let Y_1, … , Y_n be a random sample from a normal distribution with unknown mu and unknown variance sigma^2. We want to test H_0 : mu=0 versus H_a : mu !=0. Find the rejection region for the likelihood ratio test with level alpha.
Suppose that a random variable X has the distribution (pdf) f(x) =kx(1 -x^2) for 0 <...
Suppose that a random variable X has the distribution (pdf) f(x) =kx(1 -x^2) for 0 < x < 1 and zero elsewhere. a. Find k. b. Find P(X >0. 8) c. Find the mean of X. d. Find the standard deviation of X. 2. Assume that test scores for all students on a statistics test are normally distributed with mean 82 and standard deviation 7. a. Find the probability that a single student scores greater than 80. b. Find the...
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y...
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y is a random variable uniformly distributed over the interval (0, 3). Find the probability density function for X + Y .
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0...
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0 < 4x < y < 12 and 0 otherwise Find Cov (X,Y).
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 <...
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 < x < 1. Suppose the random variable Y is related to X via Y = (-ln(1 - X))^1/3. (a) Demonstrate that the pdf of Y is fY (y) = 3y^2 e^-y^3, y>0. (Hint: Work out FY (y)) (b) Determine E[Y ]. (Hint: Use Wolfram Alpha to undertake the integration.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT