The data in the accompanying table represent the population of a certain country every 10 years for the years 1900-2000. An ecologist is interested in finding an equation that describes the population of the country over time.
Year, x Population, y
1900 79,212
1910 92,228
1920 104,021
1930 123,202
1940 132,164
1950 151,325
1960 179,323
1970 203,302
1980 226,542
1990 248,709
2000 281,421
(a) Determine the least-squares regression equation, treating year as the explanatory variable. Choose the correct answer below.
A.
ŷ =2,011x−1,521,037
B.
ŷ =2,011x−3,755,493
C.
ŷ =−3,755,493x+2,011
D.
ŷ =1,236,362x−3,755,493
Correct option:
B.
Explanation:
From the given data, the following Table is calculated:
X | Y | XY | X2 |
1900 | 79212 | 150502800 | 3610000 |
1910 | 92228 | 176155480 | 3648100 |
1920 | 104021 | 199720320 | 3724900 |
1930 | 123202 | 237779860 | 3724900 |
1940 | 132164 | 256398160 | 3763600 |
1950 | 151325 | 295083750 | 3802500 |
1960 | 179323 | 351473080 | 3841600 |
1970 | 203302 | 400504940 | 3880900 |
1980 | 226542 | 448553160 | 3920400 |
1990 | 248709 | 494930910 | 3960100 |
2000 | 281421 | 562842000 | 4000000 |
Total = 21450 | 1821449 | 3573944460 | 41838500 |
So
The last square regression equation is:
Get Answers For Free
Most questions answered within 1 hours.