Question

SUMMARY OUTPUT Regression Statistics Multiple R 0.881644384 R Square 0.77729682 Adjusted R Square 0.767919844 Standard Error...

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.881644384
R Square 0.77729682
Adjusted R Square 0.767919844
Standard Error 2.046234994
Observations 100
ANOVA
df SS MS F Significance F
Regression 4 1388.337623 347.0844058 82.89418891 3.94359E-30
Residual 95 397.7723769 4.187077651
Total 99 1786.11
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 30.46621607 3.539611332 8.607220742 1.55786E-13 23.43919912 37.49323302 23.43919912 37.49323302
Engine size -0.026439837 0.008914999 -2.965769936 0.003818268 -0.044138349 -0.008741326 -0.044138349 -0.008741326
Compression Ratio 0.364901894 0.056081385 6.506649162 3.58903E-09 0.253566269 0.476237519 0.253566269 0.476237519
Horsepower -0.051842045 0.011121451 -4.661446094 1.02351E-05 -0.073920917 -0.029763173 -0.073920917 -0.029763173
Peak RPM -0.000491152 0.00061553 -0.797933319 0.426899263 -0.001713133 0.000730829 -0.001713133 0.000730829

Answer the following questions using the above Liner Regression Analysis:

Dependent Variable: City MPG

Independent Varaibles: Engine Size, Compression Ratio, Horsepower, Peak RPM

1: Based on your regression output, what is the equation we would use to generate a point estimate for the city MPG using the four predictor variables?

2: Which of the predictor variables are statistically significant at the 5% significance level?

3: What is the 95% confidence interval for the effect that an increase of 1cc in engine size will have on the city MPG? (i.e., what is our 95% confidence interval for the increase or decrease in city MPG if we increase engine size by 1cc?)

4: Are you confident that increasing the engine size will really increase or decrease the city MPG in the direction that your confidence interval says it will? Why or why not?

5: Given your regression output, what effect do you think the peak RPM has on the city MPG, and why?

Homework Answers

Answer #1

Solution:

a. The regression equation is

Y = 30.4662 - 0.0264 Engine size + 0.3649 Compression ratio - 0.0518 Horsepower - 0.00049 Peak RPM

b. Since p-value of engine size, compression ratio and horsepower are less than 0.05 significance level, we can conclude that the predictor variables engine size, compression ratio and horsepower are statistically significant.

c. 95% confidence interval for the effect that an increase of 1cc in engine size will have on the city MPG is -0.0441to -0.0087.

d. yes, increasing the engine size by 1 cc will decrease the city MPG because the confidence interval is negative.

e. Peak RPM is negatively related to city MPG as city MPG increases, peak RPM decreases and vice versa.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error 14.7134321 Observations 20 ANOVA df SS MS F Significance F Regression 1 23394.2185 23394.2185 108.063881 4.9013E-09 Residual 18 3896.73153 216.485085 Total 19 27290.95 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -260.93886 39.3752125 -6.626983 3.2026E-06 -343.66312 -178.21461 -343.66312 -178.21461 Height 5.92431175 0.56989864 10.3953779 4.9013E-09 4.72699913 7.12162438 4.72699913 7.12162438 RESIDUAL OUTPUT Observation Predicted Weight Residuals 1 106.368464 8.63153552...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error 25.32612538 Observations 12 ANOVA df SS MS F Significance F Regression 5 13854.44091 2770.888181 4.319977601 0.051673038 Residual 6 3848.475761 641.4126268 Total 11 17702.91667 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -53.17436031 42.95203957 -1.237993838 0.261960445 -158.274215 51.92549434 -158.274215 51.92549434 Advertising ($1000s) 2.050813091 0.763960482 2.684449181 0.036320193 0.181469133 3.92015705 0.181469133 3.92015705 t (quarters) -4.047065728 2.779316427 -1.456137088 0.19560701 -10.84780803 2.753676575...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error 1816.52 Observations 27 ANOVA df SS MS F Significance F Regression 6 2.06E+08 34376848 10.41804 2.81E-05 Residual 20 65994862 3299743 Total 26 2.72E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4695.4 12622.97 -0.37197 0.713825 -31026.5 21635.66 -31026.5 21635.66 AGE 161.7028 126.5655 1.277621 0.216015 -102.308 425.7137 -102.308 425.7137 MILAGE -0.03441 0.023186 -1.4842 0.153346 -0.08278 0.013953 -0.08278 0.013953...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 12.4926 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 38.7857 Cylinders -2.7500 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 4.0000 1.9507 6.0000 1.1763 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
Dep.= Mileage Indep.= Length SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Length SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 6.1135 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 80.0094 Length -0.3047 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 175.0000 2.3108 210.0000 2.9335 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT