Question

Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined...

Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined as follows: ?0,0=1, ??,?+1=? and ??,?−1=1−?, for ?≥1. In addition, suppose that 12<?<1. For an arbitrary state d such that ?∈?,?≠0, compute ?(??>0 ??? ??? ?≥1 |?0=?).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let the markov chain consisting of states 0,1,2,3 have the transition probability matrix P = [0,0,1/2,1/2;...
Let the markov chain consisting of states 0,1,2,3 have the transition probability matrix P = [0,0,1/2,1/2; 1,0,0,0; 0,1,0,0; 0,1,0,0] Determine which state are recurrent and which are transient
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix   1 2 1 4 1 4 0 1 0 1 4 0 3 4   Find the periodicity of the states. \ Let {Xn|n ≥ 0} be a finite state Markov chain. prove or disprove that all states are positive recurren
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4...
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4 0.2     ? P = 0.6 0.3    ? 0.5 0.3    ? And initial probability vector a = [0.2, 0.3, ?] a) What are the missing values (?) in the transition matrix an initial vector? b) P(X1 = 0) = c) P(X1 = 0|X0 = 2) = d) P(X22 = 1|X20 = 2) = e) E[X0] = For the Markov Chain with state-space, initial vector, and...
Consider a Markov chain on {0,1,2, ...} such that from state i, the chain goes to...
Consider a Markov chain on {0,1,2, ...} such that from state i, the chain goes to i + 1 with probability p, 0 <p <1, and goes to state 0 with probability 1 - p. a) Show that this string is irreducible. b) Calculate P0 (T0 = n), n ≥ 1. c) Show that the chain is recurring.
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability...
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability matrix (pij ) given   2 3 1 3 0 0 0 1 3 2 3 0 0 0 0 1 4 1 4 1 4 1 4 0 0 1 2 1 2 0 0 0 0 0 1   Find all the closed communicating classes Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
Let {Xn|n ≥ 0} is a Markov chain with state space S = {0, 1, 2,...
Let {Xn|n ≥ 0} is a Markov chain with state space S = {0, 1, 2, 3}, X0 = 0, and transition probability matrix (pij ) given by   2 3 1 3 0 0 1 3 2 3 0 0 0 1 4 1 4 1 2 0 0 1 2 1 2   Let τ0 = min{n ≥ 1 : Xn = 0} and B = {Xτ0 = 0}. Compute P(Xτ0+2 = 2|B). . Classify all...
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6...
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6 0 .4 .2 .5 .3 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4...
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4 .1 .5 .4 .6 .3 .1 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
Consider the state space {rain, no rain} to describe the weather each day. Let {Xn} be...
Consider the state space {rain, no rain} to describe the weather each day. Let {Xn} be the stochastic process with this state space describing the weather on the nth day. Suppose the weather obeys the following rules: – If it has rained for two days straight, there is a 20% chance that the next day will be rainy. – If today is rainy but yesterday was not, there is a 50% chance that tomorrow will be rainy. – If yesterday...
Suppose that a production process changes states according to a Markov process whose one-step probability transition...
Suppose that a production process changes states according to a Markov process whose one-step probability transition matrix is given by 0 1 2 3 0 0.3 0.5 0 0.2 1 0.5 0.2 0.2 0.1 2 0.2 0.3 0.4 0.1 3 0.1 0.2 0.4 0.3 a. What is the probability that the process will be at state 2 after the 105th transition given that it is at state 0 after the 102 nd transition? b. What is the probability that the...