Question

Let X and Y be independent, standard normal variables, S = max{X, Y }, Z standard...

Let X and Y be independent, standard normal variables, S = max{X, Y }, Z standard normal. Prove that S2 and Z2 have the same distribution.

Homework Answers

Answer #1

Note-if there is any understanding problem regarding this please feel free to ask via comment box.. thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Z be a standard normal random variable and let Y = Z2. Use transformation of...
Let Z be a standard normal random variable and let Y = Z2. Use transformation of variables to find the distribution of Z, which distribution is it? Include the domain as part of your answer.
Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a)...
Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a) (10 points) Calculate Pr[Z ≤ a]. (b) (10 points) Calculate the density function of Z. (c) (5 points) Calculate V ar(Z).
6. Let d= X -Y, where X and Y are random variables with normal distribution, and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and X and Y are independent random variables. Assume that you know both the mean and variance of   X and Y, if you have random samples from X and Y with equal sample size, what is the sampling distribution for the sample means of d(assuming X and Y are independent)?
Let X and Y be independent random variables, with X following uniform distribution in the interval...
Let X and Y be independent random variables, with X following uniform distribution in the interval (0, 1) and Y has an Exp (1) distribution. a) Determine the joint distribution of Z = X + Y and Y. b) Determine the marginal distribution of Z. c) Can we say that Z and Y are independent? Good
Let X U (0, 1) and Y exp (1) be independent variables (v.a.’s) independent. What is...
Let X U (0, 1) and Y exp (1) be independent variables (v.a.’s) independent. What is the function probability density (f.d.p.) of the v.a. Z = X + Y?
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z =...
Assume that X~N(0, 1), Y~N(0, 1) and X and Y are independent variables. Let Z = X+Y, and joint density of Y and Z is expressed as f(y, z) = g(z|y)*h(y) g(z|y) is conditional distribution of Z given y, and h(y) is density of Y how can i get f(y, z)?
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having...
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having a probability distribution that puts a mass of 1/4 on the number 0, a mass of 1/4 at 1, and a mass of 1/2 at 2. a. Compute the moment generating function for S= X+Y+Z b. Use the MGF from part a to compute the second moment of S, E(S^2) c. Compute the second moment of S in a completely different way, by expanding...
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y....
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y. What will be the distribution of Z? Hint: Use moment generating function.
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).
Let X and Y be two random variables which follow standard normal distribution. Let J =...
Let X and Y be two random variables which follow standard normal distribution. Let J = X − Y . Find the distribution function of J. Also find E[J] and Var[J].
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT