Question

Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...

Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1greater thanmu 2 at the alphaequals0.05 level of significance for the given sample data. ​(b) Construct a 90​% confidence interval about mu 1minusmu 2. Population 1 Population 2 n 20 23 x overbar 50.7 46.9 s 4.8 12.8 ​(a) Identify the null and alternative hypotheses for this test. A. Upper H 0​: mu 1not equalsmu 2 Upper H 1​: mu 1equalsmu 2 B. Upper H 0​: mu 1equalsmu 2 Upper H 1​: mu 1not equalsmu 2 C. Upper H 0​: mu 1greater thanmu 2 Upper H 1​: mu 1equalsmu 2 D. Upper H 0​: mu 1equalsmu 2 Upper H 1​: mu 1less thanmu 2 E. Upper H 0​: mu 1less thanmu 2 Upper H 1​: mu 1equalsmu 2 F. Upper H 0​: mu 1equalsmu 2 Upper H 1​: mu 1greater thanmu 2 Your answer is correct. Find the test statistic for this hypothesis test. nothing ​(Round to two decimal places as​ needed.)

Need P-Value

Conclusion for this hypothesis test

And the answer for part B

Homework Answers

Answer #1

a)

Ho :   µ1 = µ2
Ha :   µ1 > µ2

Sample #1   ---->   
mean of sample 1,    x̅1=   50.70          
standard deviation of sample 1,   s1 =    4.8          
size of sample 1,    n1=   20          
                  
Sample #2   ---->     
mean of sample 2,    x̅2=   46.900          
standard deviation of sample 2,   s2 =    12.80          
size of sample 2,    n2=   23          
                  
difference in sample means = x̅1-x̅2 =    50.700   -   46.9000   =   3.8000
                  
std error , SE =    √(s1²/n1+s2²/n2) =    2.8767          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   3.8000   /   2.8767   ) =   1.32

p-value =        0.0986 [excel function: =T.DIST.RT(t stat,df) ]
Conclusion:     p-value>α , Do not reject null hypothesis      

There is not enough evidence to conclude that µ1 is greater than µ 2

b)

α=0.10

Degree of freedom, DF=       28          
t-critical value =    t α/2 =    1.701   (excel formula =t.inv(α/2,df)      
                  
                  
                  
std error , SE =    √(s1²/n1+s2²/n2) =    2.877          
margin of error, E = t*SE =    1.701   *   2.877   =   4.8937
                  
difference of means = x̅1-x̅2 =    50.7000   -   46.900   =   3.8000
confidence interval is                   
Interval Lower Limit = (x̅1-x̅2) - E =    3.8000   -   4.894   =   -1.0937
Interval Upper Limit = (x̅1-x̅2) + E =    3.8000   -   4.894   =   8.6937

===============================

please revert for doubts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the given sample statistics to test the claim about the difference between two population means...
Use the given sample statistics to test the claim about the difference between two population means mu 1μ1 and mu μ2 at the given level of significance alphaα=0.01. ​Claim: mu 1μ1greater than>mu 2μ2​, ​Statistics: x overbar 1=5.2​, s1=0.30​, n1=48 and x overbar 2=5.6​, s2=0.7 n2=37 Choose the correct null and alternative hypotheses below. A. Upper H 0​: mu 1greater thanmu 2 ​(Claim) Upper H Subscript a​: mu 1less than or equalsmu 2 B. Upper H 0​: mu 1not equalsmu 2...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1 μ1 greater than > mu 2 μ2 at the alpha α equals = 0.05 0.05 level of significance for the given sample data. ​(b) Construct a 95​% confidence interval about mu 1 μ1 minus − mu 2 μ2. Population 1 Population 2 N 22    N 23 X 50.3 X 48.2 S 5.6 S 10.6 ​(a) Identify the...
Consider the data in the table collected from three independent populations. Sample_1 - 10,3,8 Sample_2 -...
Consider the data in the table collected from three independent populations. Sample_1 - 10,3,8 Sample_2 - 5,1,6 Sample_3- 4,6,3,7 a) Calculate the total sum of squares​ (SST) and partition the SST into its two​ components, the sum of squares between​ (SSB) and the sum of squares within​ (SSW). ​b) Use these values to construct a​ one-way ANOVA table. ​c) Using alphaequals0.05​, what conclusions can be made concerning the population​ means? alphaequals0.05. ​ a) Determine the values. SSTequals ___ ​(Type an...
Assume that you have a sample of n 1 equals 5​, with the sample mean Upper...
Assume that you have a sample of n 1 equals 5​, with the sample mean Upper X overbar 1 equals 48​, and a sample standard deviation of Upper S 1 equals 6​, and you have an independent sample of n 2 equals 4 from another population with a sample mean of Upper X overbar 2 equals 30 and the sample standard deviation Upper S 2 equals 7. Assuming the population variances are​ equal, at the 0.01 level of​ significance, is...
A study was done using a treatment group and a placebo group. The results are shown...
A study was done using a treatment group and a placebo group. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.10 significance level for both parts. Treatment Placebo mu mu 1 mu 2 n 29 40 x overbar 2.34 2.69 s 0.82 0.52 a. Test the claim...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1μ1greater than>mu 2μ2 at the alphaαequals=0.10 level of significance for the given sample data. ​(b) Construct a 90​% confidence interval about mu μ1−μ2. Population 1 Population 2 n 23 19 x 46.2 45.1 s 5.1 13.4 Find the test statistic for the hypothesis test
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2 at the alphaαequals=0.01 level of significance for the given sample data.​ (b) Construct a 90​% confidence interval about μ1−μ2. Population 1 Population 2 n 24 23 x overbarx 45.1 43.4 s 5.8 12.7
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2 at the alphaαequals=0.10 level of significance for the given sample data.​(b) Construct a 90​% confidence interval about μ1−μ2. Population 1 Population 2 n 24 6 x overbarx 49.6 44.1 s 7.4 14.1
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.05α=0.05 level of significance for the given sample data.​(b) Construct a 9595​% confidence interval about mu 1 minus mu 2μ1−μ2. Population 1 Population 2 n 1717 1717 x overbarx 10.810.8 14.214.2 s 3.23.2 2.52.5 ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.05α=0.05 level of significance for the given sample data. Determine the null and...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x overbar 1x1equals=1414​, s 1s1equals=2.42.4​, n 1n1equals=1818​, x overbar 2x2equals=1515​, s 2s2equals=2.42.4​, n 2n2equals=1818 a.​ Two-tailed test, alphaαequals=0.050.05 b. 9595​% confidence interval a.​ First, what are the correct hypotheses for a​ two-tailed test? A. Upper H 0H0​: mu 1μ1equals=mu 2μ2 Upper H Subscript aHa​: mu 1μ1not...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT