Question

You have a coin (that we do not know is biased or not) that has a...

You have a coin (that we do not know is biased or not) that has a probability "p" of coming up Heads (which may be different than 1/2). Suppose you toss this coin repeatedly until you observe 1 Head. What is the expected number of times you have to toss it?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You have a coin that has a probability p of coming up Heads. (Note that this...
You have a coin that has a probability p of coming up Heads. (Note that this may not be a fair coin, and p may be different from 1/2.) Suppose you toss this coin repeatedly until you observe 1 Head. What is the expected number of times you have to toss it?
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin #2, which lands heads with probability 0.1. I conduct an experiment as follows. First I toss a fair coin to decide which biased coin I pick (say, if it lands heads, I pick coin #1, and otherwise I pick coin #2) and then I toss the biased coin twice. Let A be the event that the biased coin #1 is chosen, B1 the event...
In a situation where we have a biased coin that is tails with probability 0.7 and...
In a situation where we have a biased coin that is tails with probability 0.7 and we independently flip it 10 times. Find the following probabilities. 1. getting the sequence HTHHHTHTTH? 2. exactly 4 tails? 3. at least 4 tails? 4. expected number of tails? expected number of heads?
I toss a biased coin 15 times, with a probability of heads: ? = 0.25. Let...
I toss a biased coin 15 times, with a probability of heads: ? = 0.25. Let x equal the number of heads I toss. The probability I toss at least 2 heads is _________________ (3 points)
In a coin game, you repeatedly toss a biased coin (0.75 for head, 0.25 for tail)....
In a coin game, you repeatedly toss a biased coin (0.75 for head, 0.25 for tail). Each head represent 3 points and tail represents 1 points. You can either Toss or Stop if the total number of points you have tossed is no more than 7. Otherwise, you must Stop. When you Stop, your utility is equal to your total points (up to 7), or zero if you get a total of 8 or higher. When you Toss, you receive...
Suppose we toss a biased coin independently until a random time N independent of the outcomes...
Suppose we toss a biased coin independently until a random time N independent of the outcomes of the tosses. Where N takes values 1,2,3 with probability 0.3, 0.5, 0.2. Find E(X1 + ··· XN) where Xi = 1 if head-on i th toss with probability 0.55 and zero otherwise, (for i = 1, ··· , N).
You repeatedly flip a coin, whose probability of heads is p = 0.6, until getting a...
You repeatedly flip a coin, whose probability of heads is p = 0.6, until getting a head immediately followed by a tail. Find the expected number of flips you need to do.
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
A bias coin has the probability 2/3 of turning up heads. The coin is thrown 4...
A bias coin has the probability 2/3 of turning up heads. The coin is thrown 4 times. (a)What is the probability that the total number of heads shown is 3? (b)Suppose that we know that outcome of the first throw is a head. Find the probability that the total number of heads shown is 3. (c)If we know that the total number of heads shown is 3, find the probability that the outcome of the first throw was heads.
(a)Assuming that we toss a in-balanced coin for 100 times, and we get 40 heads from...
(a)Assuming that we toss a in-balanced coin for 100 times, and we get 40 heads from our experiment. Assuming that the relative frequency is just the true probability for tossing to get a head. Then we want to know: Probability for getting a head:   Expected variance if tossing 70 times:   (b)Given a poisson distribution with expectation 4, so the standard deviation of this distribution should be
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT