Question

The Normal Probability Distribution In §6.2 we are introduced to the Normal Probability Distribution and the...

The Normal Probability Distribution In §6.2 we are introduced to the Normal Probability Distribution and the special case of the Normal Probability Distribution, the Standard Normal Probability Distribution, which is a Normal Probability Distribution with mean (u) zero and variance (σ2) one (and standard deviation of

1). What is a z score?

2. What is the purpose of a z score?

3. If a z score were -3, where on the graph would it be? Is this a rare or a common score? Why? One way to find probabilities from a Standard Normal Distribution is to use probability tables, which are located inside the front cover of your textbook.

4. According to the table, what is the probability when z ≤ -1.23? The probability when z ≤ 1.23? 5. Select two other pairs of "opposites" on the z table (like 2, -2 etc.) and give their probabilities. 6. Show the math of adding each of the pairs. What is the total each time? Why is that the total? 7. What are the properties of the Standard Normal Probability Distribution?

Homework Answers

Answer #1

Dear student, we can provide you with a solution of 4 subquestions at a time.

1) A z-score is the number of standard deviations from the mean a data point is. It's a measure of how many standard deviations below or above the population mean a raw score is.

2) The standard score is a very useful statistic because it allows us to calculate the probability of a score occurring within our normal distribution and it enables us to compare two scores that are from different normal distributions.

3)

This is a rare score, as the score corresponding to this is 3 standard deviations below the mean.

4)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
This week we study Normal Distribution. First, see all material posted on Blackboard in section: Course...
This week we study Normal Distribution. First, see all material posted on Blackboard in section: Course Material - week 9. Also read sections 6.1, 6.2, 6.3 in Chapter 6 of the eText. Then, post your submission for Part 1 and Part 2 below. Part 1. Demonstrate that you understand basic concept of Normal Distribution. In two small paragraphs describe a couple of properties/rules of Normal distribution. Hint: look for KEY FACTS and DEFINITIONS in sections 6.1 and 6.2 of eText....
Table 1: Cumulative distribution function of the standard Normal distribution z: 0 1 2 3 Probability...
Table 1: Cumulative distribution function of the standard Normal distribution z: 0 1 2 3 Probability to the left of z: .5000 .84134 .97725 .99865 Probability to the right of z: .5000 .15866 .02275 .00135 Probability between z and z: .6827 .9544 .99730 Table 2: Inverse of the cumulative distribution function of the standard Normal distribution Probability to the left of z: . 5000 .92 .95 .975 .9990 z: 0.00 1.405 1.645 1.960 3.09 1 Normal Distributions 1. What proportion...
NOTE: Since we are given the Standard Normal Distribution, we are able to go directly to...
NOTE: Since we are given the Standard Normal Distribution, we are able to go directly to Table V to find the requested probabilities. What is the area under the curve such that z is less than - 2.20 ? What is the area under the curve such that z > - 2.20 ? What is the probability that z is less than 7.03 ? What is the probability that z is greater than 7.03 ?
Use the standard normal (z score) table to find: P(-1.00 ≤ z) Find the probability that...
Use the standard normal (z score) table to find: P(-1.00 ≤ z) Find the probability that a data value picked at random from a normal population will have a standard score (z) that lies between the following pairs of z-values. z = 0 to z = 2.10
This week we study Normal Distribution. Part 1. Demonstrate that you understand basic concept of Normal...
This week we study Normal Distribution. Part 1. Demonstrate that you understand basic concept of Normal Distribution. In two small paragraphs describe a couple of properties/rules of Normal distribution. Give one example of some practical case where we can use Normal distribution (for instance, IQ scores follow a normal distribution of probabilities with the mean IQ of 100 and a standard deviation around the mean of about 15 IQ points.) Part 2. Assign your numbers for mean μ and standard...
Q1-. A normal distribution has a mean of 15 and a standard deviation of 2. Find...
Q1-. A normal distribution has a mean of 15 and a standard deviation of 2. Find the value that corresponds to the 75th percentile. Round your answer to two decimal places. Q2-.Tyrell's SAT math score was in the 64th percentile. If all SAT math scores are normally distributed with a mean of 500 and a standard deviation of 100, what is Tyrell's math score? Round your answer to the nearest whole number. Q3-.Find the z-score that cuts off an area...
Use the z-table to determine the following probabilities. Sketch a normal curve for each problem with...
Use the z-table to determine the following probabilities. Sketch a normal curve for each problem with the appropriate probability area shaded. 1. P(z > 2.34) 2. P(z < -1.56) 3. P(z = 1.23) 4. P(-1.82 < z < 0.79) 5. Determine the z-score that corresponds with a 67% probability.
Q1-. A normal distribution has a mean of 15 and a standard deviation of 2. Find...
Q1-. A normal distribution has a mean of 15 and a standard deviation of 2. Find the value that corresponds to the 75th percentile. Round your answer to two decimal places. Q2-.Tyrell's SAT math score was in the 64th percentile. If all SAT math scores are normally distributed with a mean of 500 and a standard deviation of 100, what is Tyrell's math score? Round your answer to the nearest whole number. Q3-.Find the z-score that cuts off an area...
Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1)...
Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1) what is the probability that Z is between -1.23 and 1.64 Z Is less than -1.27 or greater than 1.74 For normal data with values symmetrically distributed around the mean find the z values that contain 95% of the data Find the value of z such that area to the right is 2.5% of the total area under the normal curve
The average apartment rental at Gotham is approximately $615 per month. Suppose these rates are roughly...
The average apartment rental at Gotham is approximately $615 per month. Suppose these rates are roughly normal with a standard deviation of $100. What proportion of rentals: 1. is at least $710 per month?     2. is less than $450 per month?    3. is between $450 and $800 per month?    Use the Z-score table of Areas Under the Standardized Normal Distribution. You may find it in Appendix D of the Basic Econometrics textbook. Please round your Z score to the nearest...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT