Question

Two samples were taken to see if the standard deviations two populations are the same or...

Two samples were taken to see if the standard deviations two populations are the same or not.

Sample1:
-size of sample is 21
-sample variance is 120

Sample 2:
-sizo of sample is 16
-Sample variance is 105

conduct the appropriate hypothesis test using a 10% level of significance.

Homework Answers

Answer #1

Null Hypothesis

Alternative Hypothesis

Under H0, the test statsitic is

Since , considering as numerator.

Degrees of freedom = (n1-1), (n2-1) = (20,15)

Significance level is = 0.10

The critical value of F for (20,15) df, at 10% significance level is 1.924

The p-value is 0.4018

Since p value is greater than significance level. Fail to Reject H0.

Hence , the two populations have the same standrad deviation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose random samples of the same size are taken from two different populations with the same...
Suppose random samples of the same size are taken from two different populations with the same mean but different standard deviations. If you make two confidence intervals, one from each sample, and these intervals have the same confidence level, how will the confidence intervals differ? Explain.
In testing the difference between two population means using two independent samples, the population standard deviations...
In testing the difference between two population means using two independent samples, the population standard deviations are assumed to be unknown, each sample size is 30, and the calculated test statistic z = 2.56. If the test is a two-tailed and the 5% level of significance has been specified, the conclusion should be: a. none of these answers is correct. b. choose two other independent samples. c. reject the null hypothesis. d. not to reject the null hypothesis.
Test the indicated claim about the means of two populations. Assume that the two samples are...
Test the indicated claim about the means of two populations. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume the population standard deviations are equal. Suppose you are interested if a name brand candle is made from the same wax as the generic store brand candle. You decide that they smell the same, so the only question left is if they last as long as a generic brand candle (of the...
1.  Two independent samples are taken from two distinct populations whichproduce sample means, standard deviations as ̄x1=...
1.  Two independent samples are taken from two distinct populations whichproduce sample means, standard deviations as ̄x1= 104.6, ̄x2= 92.9,s1= 4.8,s2= 6.9,n1= 26,n2= 19.If we use min(n1−1,n2−1) as the d.f., what t critical value would you usein constructing a 90% confidence interval forμ1−μ2?a).  2.101; b) 1.734; c) 1.708; d) 1.645
Two samples are taken with the following sample means, sizes, and standard deviations ¯x1 = 21...
Two samples are taken with the following sample means, sizes, and standard deviations ¯x1 = 21 ¯x2 = 29 n1 = 58 n2 = 56 s1 = 4 s2 = 3 Find a 87% confidence interval, round answers to the nearest hundredth. < μ1-μ2 <
Suppose you are going to test the hypothesis that two populations have the same mean. You...
Suppose you are going to test the hypothesis that two populations have the same mean. You find sample averages of 6 and 7.5 and sample 1 has a standard deviation of 16 and sample 2 has a standard deviation of 15 and both samples have 32 observations. In this case the test statistic follows the t distribution with 61 degrees of freedom. True or False: you reject the null hypothesis at the .01 level of significance. true or false
Consider the following summary statistics, calculated from two independent random samples taken from normally distributed populations....
Consider the following summary statistics, calculated from two independent random samples taken from normally distributed populations. Sample 1 x¯1=20.87 s21=2.01 n1=16 Sample 2 x¯2=24.00 s22=3.36 n2=15 Test the null hypothesis H0:μ1=μ2against the alternative hypothesis HA:μ1<μ2. a) Calculate the test statistic for the Welch Approximate t procedure. Round your response to at least 3 decimal places. b) The Welch-Satterthwaite approximation to the degrees of freedom is given by df = 26.366427. Using this information, determine the range in which the p-value...
Two samples are taken with the following sample means, sizes, and standard deviations ¯ x 1...
Two samples are taken with the following sample means, sizes, and standard deviations ¯ x 1 = 36 ¯ x 2 = 24 n 1 = 46 n 2 = 74 s 1 = 4 s 2 = 2 Estimate the difference in population means using a 89% confidence level. Use a calculator, and do NOT pool the sample variances. Round answers to the nearest hundredth.
Independent random samples of sizes n1 = 201 and n2 = 205 were taken from two...
Independent random samples of sizes n1 = 201 and n2 = 205 were taken from two populations. In the first sample, 174 of the individuals met a certain criteria whereas in the second sample, 177 of the individuals met the same criteria. Test the null hypothesis H0:p1=p2versus the alternative hypothesis HA:p1>p2. a)  Calculate the z test statistic, testing the null hypothesis that the population proportions are equal. Round your response to at least 3 decimal places.      b) What is the...
The following statistics were calculated from two random samples taken from two populations following a normal...
The following statistics were calculated from two random samples taken from two populations following a normal distribution: S1^2=350, n1=30, S2^2=700, n2=30 1. Can you infer that the two parent variances are different at a 5% significance level? 2. If the number of samples is n1 = 15 and n2 = 15, repeat question 1. 3. Describe what happens to the test statistic when the number of samples decreases.