Question

A Correlation Coefficient is a measurement of the relationship between two variables. A positive correlation means...

A Correlation Coefficient is a measurement of the relationship between two variables. A positive correlation means that as one variable increases, the second variable increases too. A negative correlation means that as one variable increases, the second variable decreases, or as one variable decreases, the second variable increases. Positive and negative correlations exists in nature, science, business, as well as a variety of other fields. Please watch the following video for a graphical explanation of the correlation coefficient:

For Discussion #3, find an example of each of the following and cite your source.

·       two variables with a positive correlation

·       two variables with a negative correlation

please do not copy another ones answer to solve this. thanks

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
correlation measures the degree to which two variables are related to one another. Here are the...
correlation measures the degree to which two variables are related to one another. Here are the definitions of the three possibilities: Positive correlations: In this type of correlation, both variables increase or decrease at the same time. A correlation coefficient close to +1.00 indicates a strong positive correlation. Negative correlations: This type of correlation indicates that as the amount of one variable increases, the other decreases (and vice versa). A correlation coefficient close to -1.00 indicates a strong negative correlation....
A coefficient of correlation of -0.9 indicates the relationship between the two variables is (a) weak...
A coefficient of correlation of -0.9 indicates the relationship between the two variables is (a) weak and negative (b) strong and positive (c) strong and negative
How might squaring a correlation coefficient be useful to understanding the relationship between two variables? Why...
How might squaring a correlation coefficient be useful to understanding the relationship between two variables? Why is it important to remember “association, not causation” when discussing correlations? Please provide an example.
Why is it advisable to generate a scatterplot before computing a correlation coefficient between two variables?...
Why is it advisable to generate a scatterplot before computing a correlation coefficient between two variables? Describe how a scatterplot might differ when viewing correlations that represent positive, negative, and no relationship between predictor and criterion variables. Is it possible to have a relation between variables that systematic (i.e., reliable and predictable) yet not linear?
One of the major misconceptions about correlation is that a relationship between two variables means causation;...
One of the major misconceptions about correlation is that a relationship between two variables means causation; that is, one variable causes changes in the other variable. There is a particular tendency to make this causal error, when the two variables seem to be related to each other. What is one instance where you have seen correlation misinterpreted as causation? Please describe. an orginal post please
1. When comparing two companies, a correlation coefficient of 0 means there is: A. Positive correlation...
1. When comparing two companies, a correlation coefficient of 0 means there is: A. Positive correlation B. Negative correlation C. No correlation D. Need more information 2. When comparing two companies, a correlation coefficient of +1 means there is: A. Positive correlation B. Negative correlation C. No correlation D. Need more information 3. Toyota Motor Corporation would like to increase revenue and decrease risk. It should merge with: A. Nissan Motor Company B. Ford Motor Company C. Google D. Honda...
Suppose we have the correlation coefficient for the relationship between two variables, A and B. Determine...
Suppose we have the correlation coefficient for the relationship between two variables, A and B. Determine whether each of the following statement is true or false. (a) The variables A and B are categorical. (b) The correlation coefficient tells us whether A or B is the explanatory variable. (c) If the correlation coefficient is positive, then lower values of variable A tend to correspond to lower values of variable B. (d) If the correlation between A and B is r...
One of the major misconceptions about correlation is that a relationship between two variables means causation;...
One of the major misconceptions about correlation is that a relationship between two variables means causation; that is, one variable causes changes in the other variable. There is a particular tendency to make this causal error, when the two variables seem to be related to each other. What is one instance where you have seen correlation misinterpreted as causation? Please describe Can you help me understand how to answer this question
A) Two variables have a high covariance. This means the two variables have a strong relationship....
A) Two variables have a high covariance. This means the two variables have a strong relationship. T/F B) For a variable x, the sample mean is 8 and the sample standard deviation is 2. One of the observations is 15. Is this observation an outlier? Group of answer choices Yes, the z-score is greater than 3 No, the z-score is between -3 and 3 Yes, the z-score is between -3 and 3 No, the z-score is less than -3 C)...
A negative correlation between variables X and Y means that ____. A. the correlation between variables...
A negative correlation between variables X and Y means that ____. A. the correlation between variables X and Y is very weak B. scores on variable X has little predicting power on the corresponding scores on variable Y C. higher scores on variable X correspond to lower scores on variable Y and vice versa D. Higher scores on variable X correspond to higher scores on variable Y while lower scores on variable X correspond to lower scores on variable Y...