Question

Consider the following hypothesis test. H_0: μ = 36.1 H_a: μ ≠ 36.1 A sample of...

Consider the following hypothesis test.

H_0: μ = 36.1

H_a: μ ≠ 36.1

A sample of 60 items will be taken and the population standard deviation is σ =12.2. Use α = .05. Compute the probability of making a Type II error if the population mean is:

a) μ = 32

b) μ = 38.5

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of...
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of 230 items will be taken and the population standard deviation is σ = 10. Use α = 0.05. Compute the probability of making a type II error if the population mean is the following. (Round your answers to four decimal places. If it is not possible to commit a type II error enter NOT POSSIBLE.) (a) μ = 18.0 (b) μ = 22.5 (c)...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 125 and the population standard deviation is assumed known with σ = 5. Use α = 0.05. (a) If the population mean is 9, what is the probability that the sample mean leads to the conclusion do not reject H0?  (Round your answer to four decimal places.) (b) What type of error would be made if the actual population mean is 9 and we...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 120 and the population standard deviation is 5. Use α = 0.05. If the actual population mean is 9, the probability of a type II error is 0.2912. Suppose the researcher wants to reduce the probability of a type II error to 0.10 when the actual population mean is 10. What sample size is recommended? (Round your answer up to the nearest integer.)
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 120 and the population standard deviation is 9. Use α = 0.05. If the actual population mean is 8, the probability of a type II error is 0.2912. Suppose the researcher wants to reduce the probability of a type II error to 0.10 when the actual population mean is 11. What sample size is recommended? (Round your answer up to the nearest integer.)
Suppose that a hypothesis test is carried out such that H_0: population mean=15 {versus} H_a: population...
Suppose that a hypothesis test is carried out such that H_0: population mean=15 {versus} H_a: population mean ≠ 15 for a significance level of 0.10. If the probability of P (T ≥ t0) =0.025. What conclusion can we draw?
Suppose the hypothesis test H0:μ=12H0:μ=12 against Ha:μ<12Ha:μ<12 is to be conducted using a random sample of...
Suppose the hypothesis test H0:μ=12H0:μ=12 against Ha:μ<12Ha:μ<12 is to be conducted using a random sample of n=44n=44 observations with significance level set as α=0.05α=0.05. Assume that population actually has a normal distribution with σ=6.σ=6. Determine the probability of making a Type-II error (failing to reject a false null hypothesis) given that the actual population mean is μ=9μ=9. P(Type-II error) ==
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.18. The population standard deviation is 5. a. Compute the value of the test statistic (to 2 decimals). b. What is the p-value (to 4 decimals)? c. Using α = .05, can it be concluded that the population mean is not equal to 15? SelectYesNo Answer the next three questions using the critical value approach. d. Using α...
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15...
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15 A sample of 50 provided a sample mean of 15.15. The population standard deviation is 3. a. Compute the value of the test statistic. b. What is the p value? c. At α = 0.05, what is the rejection rule using the critical value? What is your conclusion? 2. Consider the following hypothesis test: Ho: μ ≤ 51 H1: μ > 51 A sample...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.18. The population standard deviation is 6. a. Compute the value of the test statistic (to 2 decimals). b. What is the p-value (to 4 decimals)? c. Using α = .05, can it be concluded that the population mean is not equal to 15? SelectYesNoItem 3 Answer the next three questions using the critical value approach. d. Using...
1. Consider the following hypothesis test: Ho: μ = 15 H1: μ ≠ 15 A sample...
1. Consider the following hypothesis test: Ho: μ = 15 H1: μ ≠ 15 A sample of 50 provided a sample mean of 15.15. The population standard deviation is 3. a. Compute the value of the test statistic. b. What is the p value? c. At α = 0.05, what is the rejection rule using the critical value? What is your conclusion?