Let z denote a variable that has a standard normal
distribution. Determine the value z* to satisfy the
following conditions. (Round all answers to two decimal
places.)
(a) P(z < z*) = 0.0256
z* =
(b) P(z < z*) = 0.0097
z* =
(c) P(z < z*) = 0.0484
z* =
(d) P(z > z*) = 0.0204
z* =
(e) P(z > z*) = 0.0097
z* =
(f) P(z > z* or z <
−z*) = 0.2007
z* =
Solution:
Using standard normal table ,
(a0
P(Z < z) = 0.0256
P(Z < -1.95) = 0.0256
z = -1.95
(b)
P(Z < z) = 0.0097
P(Z < -2.34) = 0.0097
z = -2.34
(c)
P(Z < z) = 0.0484
P(Z < -1.66) = 0.0484
z = -1.66
(d)
P(Z > z) = 0.0204
1 - P(Z < z) = 0.0204
P(Z < z) = 1 - 0.0204
P(Z < 2.05) = 0.9796
z = 2.05
(e)
P(Z > z) = 0.0097
1 - P(Z < z) = 0.0097
P(Z < z) = 1 - 0.0097
P(Z < 2.34) = 0.9903
z = 2.34
(f)
P(z > 1.28 or z < -1.28) = 0.2007
Get Answers For Free
Most questions answered within 1 hours.