Question

Independent random samples are selected from two populations. The summary statistics are given below. Assume unequal...

Independent random samples are selected from two populations. The summary statistics are given below. Assume unequal variances for the questions below. m = 5 x ̅ = 12.7 s1 = 3.2

n = 7 y ̅ = 9.9 s2 = 2.1

a) Construct a 95% confidence interval for the difference of the means.

b) Using alpha = 0.05, test if the means of the two populations are different based on the result from part (a). Explain your answer.

Homework Answers

Answer #1

Ans:

a)

As,unequal variances assumed,so df=5-1=4 (as we consider smaller of m-1 or n-1 as df)

critical t value=tinv(0.05,4)=2.776

Margin of error=2.776*sqrt((3.2^2/5)+(2.1^2/7))=4.54

Point estimate for difference=12.7-9.9=2.8

95% confidence interval for difference in means

=2.8+/-4.54

=(-1.74, 7.34)

b)

As,the above confidence interval includes 0 within its limits,there is not sufficient evidence to conclude that the means of the two populations are different.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=40,x¯1=50.3,x¯2=73.8,s1=6s2=6.1 Find a 98% confidence interval for the difference μ1−μ2 of the population means, assuming equal population variances.
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=45,n2=40,x¯1=50.7,x¯2=71.9,s1=5.4s2=10.6 n 1 =45, x ¯ 1 =50.7, s 1 =5.4 n 2 =40, x ¯ 2 =71.9, s 2 =10.6 Find a 92.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances.
Two random samples were selected independently from populations having normal distributions. The statistics given below were...
Two random samples were selected independently from populations having normal distributions. The statistics given below were extracted from the samples. Complete parts a through c. x overbar 1 =40.1 x overbar 2=30.5 If σ1=σ2​, s1=33​, and s2=22​, and the sample sizes are n 1=10 and n 2n2equals=1010​, construct a 99​% confidence interval for the difference between the two population means. The confidence interval is ≤μ1−μ2≤
Independent random samples were selected from two quantitative populations, with sample sizes, means, and standard deviations...
Independent random samples were selected from two quantitative populations, with sample sizes, means, and standard deviations given below. n1 = n2 = 80, x1 = 125.3, x2 = 123.6, s1 = 5.7, s2 = 6.7 Construct a 95% confidence interval for the difference in the population means (μ1 − μ2). (Round your answers to two decimal places.) Find a point estimate for the difference in the population means. Calculate the margin of error. (Round your answer to two decimal places.)
rovided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
rovided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. X1=20, S1=6, N1=21, X2=22, S2=7, N2= 15 Left tailed test, a=.05 90% confidence interval The 90% confidence interval is from ____ to ____
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x1= 19, s1= 3, n1= 12, x2= 15, s2= 2, n2=13 a. What are the correct hypotheses for a​ left-tailed test? b. Compute the test statistic. c. Determine the​ P-value. d. The 90​% confidence interval is from _____ to _______ ?
Independent random samples selected from two normal populations produced the following sample means and standard deviations....
Independent random samples selected from two normal populations produced the following sample means and standard deviations. Sample 1 Sample 2 n1 = 15 n2 = 11 x1 = 7.1     x2= 9.2 s1 = 2.3 s2 = 2.8 Find the 80% Confidence Interval for the difference in the population means of Sample 1 and 2. Circle the correct conclusion below: A) The result suggests that there is no significant difference between the means. B) The result suggests that Sample 1 population...
The heights of randomly selected men and women were recorded. The summary statistics are below. Construct...
The heights of randomly selected men and women were recorded. The summary statistics are below. Construct a 90% confidence interval for the difference between the mean height (in cm) of women and the mean height of men. Assume that the two samples are independent and that they have been randomly selected from normally distributed populations. Do not assume that the population standard deviations are equal. Women n1=10 x1=162.4cm s1= 11.8cm Men n2=10 x2=10 s2=5.3cm   
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT