Based on this study, what is the final model you would recommend to the Head of the Science Department? And Comment on the overall adequacy of the final model.
DATA 1
HS_SCI | HS_ENG | HS_MATH | U | Gender | ATAR | |||
SUMMARY OUTPUT | ||||||||
Multiple R | 0.48301716 | |||||||
R Square | 0.23330558 | |||||||
Adjusted R Square | 0.21210666 | |||||||
1.18199152 | ||||||||
224 | ||||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
6 | 92.2552908 | 15.3758818 | 11.0055388 | 1.0596E-10 | ||||
217 | 303.171559 | 1.39710396 | ||||||
223 | 395.42685 | |||||||
Coefficients | t Stat | P-value | Lower 95% | Upper 95% | ||||
Intercept | 1.81105553 | 0.64338389 | 2.81489099 | 0.00532825 | 0.54297399 | 3.07913706 | 0.54297399 | 3.07913706 |
HS_SCI | 0.09600825 | 0.10389727 | 0.92406901 | 0.35647679 | -0.1087687 | 0.30078523 | -0.1087687 | 0.30078523 |
HS_ENG | 0.05585575 | 0.10411875 | 0.53646199 | 0.59218883 | -0.1493577 | 0.26106925 | -0.1493577 | 0.26106925 |
HS_MATH | 0.26024847 | 0.10209913 | 2.54897824 | 0.01149448 | 0.05901554 | 0.46148139 | 0.05901554 | 0.46148139 |
U | -0.3967997 | 0.18116867 | -2.1902223 | 0.02957342 | -0.7538752 | -0.0397241 | -0.7538752 | -0.0397241 |
Gender | -0.0978474 | 0.17959186 | -0.5448323 | 0.58642836 | -0.4518151 | 0.25612026 | -0.4518151 | 0.25612026 |
ATAR | -0.0049033 | 0.02658113 | -0.1844651 | 0.85382087 | -0.0572935 | 0.04748696 | -0.0572935 | 0.04748696 |
From the above result, we can conclude, that as the multiple R-sq is 0.48, the full model can explain the 48% of total variability.
BEST MODEL:
we will use the p-value concepts for selecting the best model. we know that the if the associated p-value is less than 0.05 then the variable is a significant predictor.
Here the variable HS_MATH & U, these two variables are significant. our final model will be:
Predicted= 1.81105553+0.26024847*HS_MATH - 0.3967997*U
Thank you for asking. Please rate my answer...!!
Get Answers For Free
Most questions answered within 1 hours.