Question

5. You have performed a simple linear regression model and ended up with Y(Y with a...

5. You have performed a simple linear regression model and ended up with Y(Y with a hat) = b0 + b1 x.

(a) In your own words, describe clearly what the coefficient of determination, r^2, measures.

(b) Suppose that your calculations produce r^2 = 0.215. As discussed in textbook, what can you conclude from this value? Furthermore, what can you say about the strength and direction of the relationship between the predictor and the response variable?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the simple linear regression model estimate Y = b0 + b1X A. Y - estimated...
In the simple linear regression model estimate Y = b0 + b1X A. Y - estimated average predicted value, X – predictor, Y-intercept (b1), slope (b0) B. Y - estimated average predicted value, X – predictor, Y-intercept (b0), slope (b1) C. X - estimated average predicted value, Y – predictor, Y-intercept (b1), slope (b0) D. X - estimated average predicted value, Y – predictor, Y-intercept (b0), slope (b1) The slope (b1) represents A. the estimated average change in Y per...
Suppose that your linear regression model includes a constant term, so that in the linear regression...
Suppose that your linear regression model includes a constant term, so that in the linear regression model Y = Xβ + ε The matrix of explanatory variables X can be partitioned as follows: X = [i X1]. The OLS estimator of β can thus be partitioned accordingly into b’ = [b0 b1’], where b0 is the OLS estimator of the constant term and b1 is the OLS estimator of the slope coefficients. a) Use partitioned regression to derive formulas for...
CW 2 List 5 assumptions of the simple linear regression model. You have estimated the following...
CW 2 List 5 assumptions of the simple linear regression model. You have estimated the following equation using OLS: ŷ = 33.75 + 1.45 MALE where y is annual income in thousands and MALE is an indicator variable such that it is 1 for males and 0 for females. a) According to this model, what is the average income for females? b) According to this model, what is the average income for females? c) What does OLS stand for? How...
Linear Regression conception the true regression model is Y=B0+B1X+esilon However, the sample simple regression line is...
Linear Regression conception the true regression model is Y=B0+B1X+esilon However, the sample simple regression line is Y_head=B0_head+B1_headX, and it doesn't have the error esilon, but why .Please explain it step by step and with some proof to support ***follow the comment***
Let us instead fit a linear regression model to the data on employee sales. in particular,...
Let us instead fit a linear regression model to the data on employee sales. in particular, we fit the model: sales = b0 + b1*employee group + e, where employee group is a categorical variable with values a, b, and c. we set group a to be the reference category.  from this model we get the following output. from this output, 1. what can we conclude is the mean sales for group a (in dollars/day)? 2.what can you conclude is the...
The data file Demographics was used in a simple linear regression model where Unemployment Rate is...
The data file Demographics was used in a simple linear regression model where Unemployment Rate is the response variable and Cost of Living is the explanatory variable. You may refer to the previous two questions for the regression model if you wish. The anova function in R was used to obtain the breakdown of the sums of squares for the regression model. This is shown below: > anova(myreg)Analysis of Variance Table Response: Unemployment Df Sum Sq Mean Sq F value...
1. A linear regression has the following equation: y = -9x + 2. How much would...
1. A linear regression has the following equation: y = -9x + 2. How much would y change by, if x increases by 4? Answer with a positive number if y increases, and a negative number if y decreases. 2.A linear regression has the following equation: y = -0.52x + 10, with a coefficient of determination R2 = 0.64. What is the correlation coefficient, rounded to two decimal places? 3. A linear regression has the following equation: y = -0.36x...
Consider the simple linear regression model y=10+30x+e where the random error term is normally and independently...
Consider the simple linear regression model y=10+30x+e where the random error term is normally and independently distributed with mean zero and standard deviation 1. Do NOT use software. Generate a sample of eight observations, one each at the levels x= 10, 12, 14, 16, 18, 20, 22, and 24. Do NOT use software! (a) Fit the linear regression model by least squares and find the estimates of the slope and intercept. (b) Find the estimate of ?^2 . (c) Find...
Consider a linear regression model with a response Y, and the predictors, Based on a random...
Consider a linear regression model with a response Y, and the predictors, Based on a random sample of 25 observations, the estimated model and other statistics are obtained as shown below: SST = 296458 and R-Square = 0.8803. What is the value of the test statistic for testing the overall utility of this model? Round your answers to the nearest ten-thousandth (4 decimals).
Suppose that a simple linear regression model is appropriate for describing the relationship between y =...
Suppose that a simple linear regression model is appropriate for describing the relationship between y = house price (in dollars) and x = house size (in square feet) for houses in a large city. The population regression line is y = 22,500 + 46x and σ = 5,000. (a) What is the average change in price associated with one extra sq. ft of space? $ What is the average change in price associated with an additional 100 sq. ft of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT