The following data are measurements of tensile strength in MPa (megapascals) and hardness (Rockwell E scale, dimensionless) for 20 pieces of die-cast aluminium. A least-squares regression line has been fitted and displayed on a scatterplot of the data.
Sample | Strength | Hardness | Sample | Strength | Hardness |
---|---|---|---|---|---|
1 | 202 | 53 | 11 | 205 | 60 |
2 | 241 | 70 | 12 | 201 | 51 |
3 | 234 | 78 | 13 | 262 | 95 |
4 | 234 | 55 | 14 | 238 | 88 |
5 | 234 | 64 | 15 | 177 | 51 |
6 | 244 | 71 | 16 | 183 | 54 |
7 | 222 | 82 | 17 | 170 | 52 |
8 | 230 | 67 | 18 | 197 | 64 |
9 | 170 | 56 | 19 | 223 | 83 |
10 | 240 | 86 | 20 | 194 | 56 |
Click here to download the MATLAB data file
What can be concluded from the P-value in the Analysis of Variance Table, using significance level 0.01?
Output using excel:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.767040848 | |||||
R Square | 0.588351663 | |||||
Adjusted R Square | 0.565482311 | |||||
Standard Error | 17.92457485 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 8265.7231 | 8265.723094 | 25.72664329 | 7.94408E-05 | |
Residual | 18 | 5783.226906 | 321.2903837 | |||
Total | 19 | 14048.95 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 116.1018794 | 19.91562859 | 5.829686914 | 1.60035E-05 | 74.26069633 | 157.9430624 |
X | 1.481259291 | 0.292038107 | 5.072143856 | 7.94408E-05 | 0.867709995 | 2.094808587 |
p-value = 0.0001
As p-value = 0.0001 < 0.01, we reject the null hypothesis.
There is a relationship between variables
Get Answers For Free
Most questions answered within 1 hours.