Can a low barometer reading be used to predict maximum wind speed of an approaching tropical cyclone? For a random sample of tropical cyclones, let x be the lowest pressure (in millibars) as a cyclone approaches, and let y be the maximum wind speed (in miles per hour) of the cyclone.
x | 1004 | 975 | 992 | 935 | 973 | 934 |
y | 40 | 100 | 65 | 145 | 79 | 149 |
(c) Use a calculator to verify that
x = 5813,
x2 = 5,636,015,
y = 578,
y2 = 65,292
and
xy = 553,748.
Compute r. (Round your answer to three decimal
places.)
Solution :
X | Y | XY | X^2 | Y^2 |
1004 | 40 | 40160 | 1008016 | 1600 |
975 | 100 | 97500 | 950625 | 10000 |
992 | 65 | 64480 | 984064 | 4225 |
935 | 145 | 135575 | 874225 | 21025 |
973 | 79 | 76867 | 946729 | 6241 |
934 | 149 | 139166 | 872356 | 22201 |
n | 6 |
sum(XY) | 553748.00 |
sum(X) | 5813.00 |
sum(Y) | 578.00 |
sum(X^2) | 5636015.00 |
sum(Y^2) | 65292.00 |
Numerator | -37426.00 |
Denominator | 38061.50 |
r | -0.9833 |
r square | 0.9669 |
Xbar(mean) | 968.8333 |
Ybar(mean) | 96.3333 |
SD(X) | 26.4160 |
SD(Y) | 40.0236 |
b | -1.4898 |
a | 1539.7295 |
r = -0.983
Get Answers For Free
Most questions answered within 1 hours.