Question

Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...

Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1.

1. Are X and Y independent? Explain with a picture.

2. Find the marginal pdf fX(x).

3. Find P( Y < 1/8 | X = 1/2 )

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let fX,Y be the joint density function of the random variables X and Y which is...
Let fX,Y be the joint density function of the random variables X and Y which is equal to fX,Y (x, y) = { x + y if 0 < x, y < 1, 0 otherwise. } Compute the probability density function of X + Y . Referring to the problem above, compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y)...
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y) 0 <= x, y { 0 otherwise (a) Show whether X and Y are independent or not. (b) Find the PDF of fX,Y |B(x,y) where B represents the event X + Y < 3 (c) Find fY | B(x) where B represents the event X + Y < 3
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
Consider the random variables X and Y with the following joint probability density function: fX,Y (x,...
Consider the random variables X and Y with the following joint probability density function: fX,Y (x, y) = xe-xe-y, x > 0, y > 0 (a) Suppose that U = X + Y and V = Y/X. Express X and Y in terms of U and V . (b) Find the joint PDF of U and V . (c) Find and identify the marginal PDF of U (d) Find the marginal PDF of V (e) Are U and V independent?
Let X and Y be random variables with joint pdf f(x, y) = 2 + x...
Let X and Y be random variables with joint pdf f(x, y) = 2 + x − y, for 0 <= x <= 1, 1 <= y <= 2. (a) Find the probability that min(X, Y ) <= 1/2. (b) Find the probability that X + √ Y >= 4/3.
The continuous random variables X and Y have joint pdf f(x, y) = cy2 + xy/3   0...
The continuous random variables X and Y have joint pdf f(x, y) = cy2 + xy/3   0 ≤ x ≤ 2, 0 ≤ y ≤ 1 (a) What is the value of c that makes this a proper pdf? (b) Find the marginal distribution of X. (c) (4 points) Find the marginal distribution of Y . (d) (3 points) Are X and Y independent? Show your work to support your answer.
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.