Question

Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...

Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table)


H0: p1p2 = 0.04
HA: p1p2 ≠ 0.04

x1 = 154 x2 = 145
n1 = 253 n2 = 380


a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)

Test Statistic ______



b. Find the p-value.

  • 0.025  p-value < 0.05
  • 0.05  p-value < 0.10
  • p-value  0.10
  • p-value < 0.01

  • 0.01  p-value < 0.025



c. At the 1% significance level, what is the conclusion?

  • Do not reject H0; the difference between population proportions differs from 0.04.

  • Reject H0; the difference between population proportions does not differ from 0.04.

  • Do not reject H0; the difference between population proportions does not differ from 0.04.

  • Reject H0; the difference between population proportions differs from 0.04.

Homework Answers

Answer #1

a)

first population 2nd population
x=    154 145
n = 253 380
p̂=x/n= 0.6087 0.3816
estimated prop. diff =p̂1-p̂2    = 0.2271
pooled prop p̂ =(x1+x2)/(n1+n2)= 0.4724
std error Se=√(p̂1*(1-p̂1)*(1/n1+1/n2) = 0.0405
test stat z=(p̂1-p̂2)/Se = 4.62

b)

P value   = 0.0000 (from excel:2*normsdist(-4.62)

p-value < 0.01

c)since p value is less than 0.01

Reject H0; the difference between population proportions differs from 0.04.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table) H0: p1 − p2 ≥ 0 HA: p1 − p2 < 0 x1 = 250 x2 = 275 n1 = 400 n2 = 400 a. Calculate the value of the test statistic. (Negative value should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2 = 0.20 HA : P1− P2 ≠ 0.20   x1 = 150 x2 = 130   n1 = 250 n2 = 400 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)   Test statistic    b. Approximate the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 – μ2 = 9 HA: μ1 – μ2 ≠ 9 x−1 = 54 , s1 = 21.6 , n1 = 22 x−2 = 32 , s2 = 15.3, n2 = 18 Assume that the populations are normally distributed with equal variances. a-1. Calculate the value of the test statistic. (Round intermediate calculations to at...
Consider the following competing hypotheses: (You may find it useful to reference the appropriate table: z...
Consider the following competing hypotheses: (You may find it useful to reference the appropriate table: z table or t table) H0: μD ≥ 0; HA: μD < 0 d¯ = −4.0, sD = 5.8, n = 20 The following results are obtained using matched samples from two normally distributed populations: a-1. Calculate the value of the test statistic, assuming that the sample difference is normally distributed. (Negative value should be indicated by a minus sign. Round intermediate calculations to at...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table) H0: p1 − p2 = 0.20 HA: p1 − p2 ≠ 0.20 x1 = 144 x2 = 131 n1 = 248 n2 = 417
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 75 x−2x−2 = 79 σ1 = 11.10 σ2 = 1.67 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 57 x−2x−2 = 63 σ1 = 11.5 σ2 = 15.2 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 68 x−2x−2 = 80 σ1 = 12.30 σ2 = 1.68 n1 = 15 n2 = 15 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
A multinomial experiment produced the following results: (You may find it useful to reference the appropriate...
A multinomial experiment produced the following results: (You may find it useful to reference the appropriate table: chi-square table or F table) Category 1 2 3 4 5 Frequency 57 63 70 55 55 a. Choose the appropriate alternative hypothesis to test if the population proportions differ. All population proportions differ from 0.20. Not all population proportions are equal to 0.20. b. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0: p1 − p2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0: p1 − p2 ≥ 0 HA: p1 − p2 < 0   x1 = 236 x2 = 254   n1 = 387 n2 = 387 a. At the 5% significance level, find the critical value(s). (Negative values should be indicated by a minus sign. Round your answer to 2 decimal places.)   Critical value    b. Calculate the value of the test statistic. (Negative value should be indicated by a...