)Using level of significance of .05, test the claim that the soda preference for CLC students are not uniform. Soda Pepsi Diet Pepsi Mountain Dew Cherry Pepsi Root Beer Other Frequency 30 45 32 21 25 28 a. Place the Soda in column 1, place frequency in column 2, place expected frequency in column 3 , . Find the test value for this goodness of fit test using calculator and type it on Excel, Find the p-value for this goodness of fit test using Excel function (chisq.test) d. Type all 7 hypothesis testing steps for this particular problem.
a)
soda | freq (oi) | exp freq(ei) | oi-ei | (oi-ei)^2 | ((oi-ei)^2)/ei |
Pepsi | 30 | 30.16667 | -0.167 | 0.0278 | 0.0009208 |
Diet Pepsi | 45 | 30.16667 | 14.833 | 220.03 | 7.2937385 |
Mountain Dew | 32 | 30.16667 | 1.8333 | 3.3611 | 0.111418 |
Cherry Pepsi | 21 | 30.16667 | -9.167 | 84.028 | 2.7854512 |
Root Beer | 25 | 30.16667 | -5.167 | 26.694 | 0.8848987 |
Other | 28 | 30.16667 | -2.167 | 4.6944 | 0.1556169 |
total | 181 | 11.2320442 |
Ho: the soda preference for CLC students are uniform
vs H1:the soda preference for CLC students are not uniform
test statistic:
t calculated=11.2320
t tabulated=t0.05,5 d.f=11.070
p value=CHISQ.TEST()=0.0470
p value < 0.05
that is we reject the null hypothesis
hence
the soda preference for CLC students are not uniform
Get Answers For Free
Most questions answered within 1 hours.