Question

The r.v. X has the probability density function f (x) = ax + bx2 if 0...

The r.v. X has the probability density function f (x) = ax + bx2 if 0 < x < 1 and zero otherwise. If E[X] = 0.6, find (a) P[X < 21] and (b) Var(X). (Answers should be in numerical values and not be as expressions in a and b.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random variable X has a probability function f(x) = Ax, 0 ≤ x ≤ 1,...
A random variable X has a probability function f(x) = Ax, 0 ≤ x ≤ 1, 0, otherwise. a. What is the value of A? (Hint: intigral -inf to inf f(x)dx= 1.) b. Compute P(0less than x less than 1/3) c. Compute the cdf. of X. d. Compute E(X). e. Compute V(X).
Let X be a discrete r.v. and Y be a continuous r.v. such that the conditional...
Let X be a discrete r.v. and Y be a continuous r.v. such that the conditional distribution of X given Y = y is a (discrete) geometric distribution with probability for success p, and such that Y has pdf f_Y(y) = 3y for 0 < y < 1 (and zero otherwise). a) Compute the pmf of X. b) Compute E[X]. c) Does the r.v. Var(X | Y) have a finite expectation?
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x...
A random variable X has probability density function f(x) defined by f(x) = cx−6 if x > 1, and f(x) = 0, otherwise. a. Find the constant c. b. Calculate E(X) and Var(X). c. Now assume Z1, Z2, Z3, Z4 are independent RVs whose distribution is identical to that of X. Compute E[(Z1 +Z2 +Z3 +Z4)/4] and Var[(Z1 +Z2 +Z3 +Z4)/4]. d. Let Y = 1/X, using the formula to find the pdf of Y.
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
The probability density function for a continuous random variable X is given by         f(x) = 0.6                 0<X<1...
The probability density function for a continuous random variable X is given by         f(x) = 0.6                 0<X<1               = 0.10(x)         1 ≤X≤ 3               = 0 otherwise Find the 85th percentile value of X.
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤...
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤ x  ≤ 2 and zero otherwise. Find the mean and standard deviation of the random variable X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT