Suppose the random variable X has Poisson distribution with rate parameter l. Let g be the function defined by g(u) = 1/(u+1) , u >0. Show E(g(X)) >g(E(X)).
Answer:
To prove E(g(X)) > g(E(X))
Here it is given that the random variable X has Poisson distribution with rate parameter l
Let us consider LHS
E(g(X))
= E(1 / (1 + x))
= (1 / x+1) e^-I * I^x / x!
= e^-I * I^x / (x+1)!
= e^-I*I^x / (x+1)!
= 1/I e^-I * I^(x+1) / (x+1)!
= 1/I e^-I*I^u / u!
= 1/I [e^-I*I^u / u! - e^-I]
= 1/I (1 - e^-I)
Consider,
E(X) = I
Now g(E(X)) = 1 / (I + 1)
E(g(x)) - g(E(X)) = 1/I - e^-I/I - 1/(1+I)
= 1/(I(I+1) - e^-I/I
= 1/I [ 1/(I+1) - 1/e^I)
[e^I = 1 + I + I^2/2! + ........ >= 1 + I ]
So
1 / (1 + I) > 1/e^I
(1/(1+I) - 1/e^I) > 0
E*g(X)) >= g(E(X)
Here
Therefore , LHS = RHS
Hence it is proved.
Get Answers For Free
Most questions answered within 1 hours.