Question

Let X and Y have the joint p.d.f. f(x, y) = 1I(|x^2−y^2|<1). Then, (a) Find the...

Let X and Y have the joint p.d.f. f(x, y) = 1I(|x^2−y^2|<1). Then,

(a) Find the marginal distributions of X and Y respectively.

(b) Obtain the conditional distribution of Y given X=x,for 0< x <1.

(c) Find the mean and variance of X only.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1        ...
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1         = 0 otherwise 2. Then, (a) Find the marginal distributions of X and Y respectively. (b) Obtain the conditional distribution of Y given X = x, for 0 < x < 1. (c) Find the mean and variance of X only.
3. Let X and Y have the joint p.d.f. f(x,y)=2(x+y), 0<x<y<1. Find the marginal p.d.f. of...
3. Let X and Y have the joint p.d.f. f(x,y)=2(x+y), 0<x<y<1. Find the marginal p.d.f. of X and the marginal p.d.f. of Y. Determine whether Xand Y are independent.
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?
Consider the function f(x/y)=(y^xe^-y)/x!, x=0,1,... y>=0 show that for each fixed y, f(x/y)id a p.d.f, the...
Consider the function f(x/y)=(y^xe^-y)/x!, x=0,1,... y>=0 show that for each fixed y, f(x/y)id a p.d.f, the conditional p.d.f of r.v. X, given another r.v. Y equals y If the marginal p.d.f of Y is Negative Exponentioal with parameter lambds=1, what is the joint p.d.f of X,Y? Show that the marginal p.d.f of X is given by f(x)=(1/2)^(x+1), x=0,1,2...
A computer system consists of a CPU and motherboard. Let X and Y denote the life...
A computer system consists of a CPU and motherboard. Let X and Y denote the life span of the CPU and motherboard, respectively. The joint p.d.f. is given by f(x,y) = x/6 where 0<=x<= 3, 0<=y<=2 = 0 elsewhere. a) Find P[X+Y<=3]. b) Find the marginal distribution of X. c) Find the conditional distribution of Y given X. d) Find E(X+Y).
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y...
The random variables X and Y have a joint p.d.f. given by f(x,y) = (3(x +y −xy))/7 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2. Find the following. (a) E[X], E[Y ] (b) Cov[X,Y]
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y)...
Let X and Y are two continuous random variables. It's joint p.d.f is given as: f(x,y) = 2 , 0 < x < y < 1 = 0, otherwise Calculate P(x+y >1)
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
If the joint probability distribution of X and Y is given by: f (x, y) =...
If the joint probability distribution of X and Y is given by: f (x, y) = 3k (x + y), for x = 0, 1, 2, 3; y = 0, 1, 2. a) .- Find the constant k. b) .- Using the table of the joint distribution and the marginal distributions, determine if variable X and variable Y are independent.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT