Question

Today, full-time college students report spending a mean of 27 hours per week on academic activities,...

Today, full-time college students report spending a mean of 27 hours per week on academic activities, both inside and outside the classroom. (Source: “A Challenge to Col- lege Students for 2013: Don’t Waste Your 6,570,” Huffington Post, January 29, 2013, huff.to/13dNtuT.) Assume the standard devia- tion of time spent on academic activities is 4 hours. If you select a random sample of 16 full-time college students,

PLEASE USE NORMDIST AND NORMINV IN EXCEL

  1. what is the probability that the mean time spent on academic activities is at least 26 hours per week?

  2. there is an 85% chance that the sample mean is less than how many hours per week?

  3. What assumption must you make in order to solve (a) and (b)?

  4. If you select a random sample of 64 full-time college students, there is an 85% chance that the sample mean is less than how many hours per week?

  5. The probability is 66% that the sample mean will be between what two values symmetrically distributed around the population mean?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Today, full-time college students report spending a mean of 27 hours per week on academic activities,...
Today, full-time college students report spending a mean of 27 hours per week on academic activities, both inside and outside the classroom. (Source: “A Challenge to Col- lege Students for 2013: Don’t Waste Your 6,570,” Huffington Post, January 29, 2013, huff.to/13dNtuT.) Assume the standard devia- tion of time spent on academic activities is 4 hours. If you select a random sample of 16 full-time college students, PLEASE USE NORMDIST AND NORMINV IN EXCEL what is the probability that the mean...
Today, full time college students report spending a mean of 27 hours per week on academic...
Today, full time college students report spending a mean of 27 hours per week on academic activities, both inside and outside of the classroom. Assume the standard deviation of time spent on academic activities is 4 hours. If you select a random sample of 50 full-time college students: A. Describe the shape of the sampling distribution. How do you know it is this shape? B. Find the mean and standard deviation for the distribution of the sample mean (x bar)...
Full-time college students report spending a mean of 25hours per week on academic? activities, both inside...
Full-time college students report spending a mean of 25hours per week on academic? activities, both inside and outside the classroom. Assume the standard deviation of time spent on academic activities is 4 hours. Complete parts? (a) through? (d) below. a. If you select a random sample of 25 ?full-time college? students, what is the probability that the mean time spent on academic activities is at least 24 hours per? week? ?(Round to four decimal places as? needed.) b. If you...
Full-time college students report spending a mean of 28 hours per week on academic​ activities, both...
Full-time college students report spending a mean of 28 hours per week on academic​ activities, both inside and outside the classroom. Assume the standard deviation of time spent on academic activities is 6 hours. Complete parts​ (a) through​ (d) below. If you select a random sample of 25 ​full-time college​ students, what is the probability that the mean time spent on academic activities is at least 27 hours per​ week?
Assume the standard deviation of time spent preparing for classes is 4 hours. If you select...
Assume the standard deviation of time spent preparing for classes is 4 hours. If you select a random sample of 16 students, a. what is the probability that the mean time spent preparing for classes is at least 14 hours per week? b. there is an 85% chance that the sample mean is less than how many hours per week? c. what assumption must you make in order to solve (a) and (b)? d. if you select a random sample...
4. The amount of time in hours that college students spend on facebook per week is...
4. The amount of time in hours that college students spend on facebook per week is normally distributed with a mean of 40. You decide to conduct your own test. In a random sample of 60 college students you find that the mean time per week spent on facebook is 37.8 hrs and the standard deviation is 12.2. Does this mean differ significantly from the national average? Test your hypothesis at the .05 significance level and state your conclusion.
Dean Halverson recently read that full-time college students study 20 hours each week. She decides to...
Dean Halverson recently read that full-time college students study 20 hours each week. She decides to do a study at her university to see if there is evidence that students study an average of less than 20 hours each week. A random sample of 34 students were asked to keep a diary of their activities over a period of several weeks. It was found that he average number of hours that the 34 students studied each week was 17.9 hours....
Dean Halverson recently read that full-time college students study 20 hours each week. She decides to...
Dean Halverson recently read that full-time college students study 20 hours each week. She decides to do a study at her university to see if there is evidence that students study an average of less than 20 hours each week. A random sample of 32 students were asked to keep a diary of their activities over a period of several weeks. It was found that he average number of hours that the 32 students studied each week was 19.1 hours....
4. Study Time. A university states the mean number of study hours per week for full-time...
4. Study Time. A university states the mean number of study hours per week for full-time student (12 units +) should be at least 20 hours. Based on the random sample of weekly study hours for the 8 full-time students listed below, is the mean study time for all full-time students less than the recommended amount? ( use a=.10, assume sample comes from a population that is normal) 21.8    17.6   21.6   16.9   15.4   19.4   22.6   18.1 Check Assumptions: Ho: Diagram:...
The times that college students spend studying per week have a distribution skewed to the right...
The times that college students spend studying per week have a distribution skewed to the right with a mean of 8.7 hours and a standard deviation of 2.2 hours. Find the probability that the mean time spent studying per week for a random sample of 45 college students would be a. between 8.3 and 8.9 hours.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT