Question

Consider a test of H0 : μ = μ0 vs. H0 : μ < μ0. Suppose...

Consider a test of

H0 : μ = μ0 vs. H0 : μ < μ0.

Suppose this test is based on a sample of size 8, that σ2 is known, and that the underlying population is normal. If a 5% significance level is desired, what would be the rejection rule for this test?

Homework Answers

Answer #1

This is a one sample test for mean

Though is known , as sample size is small , we use t test for mean

Test statistic is given by

For rejection rule we need to find critical value, tc

The test is left tailed as the alternative hypothesis is , rejection region would be in the left tail

degrees of freedom = n-1 = 8-1= 7

For 5% leve of significance ,with df =7 , critical value of t is

tc = - 1.89 (from t critical value table)

Thus rejection rule is

If calculated value of t < -1.89 , we reject the null hypothesis

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Consider a test of H0 : μ = μ0 vs. H0 : μ < μ0....
1) Consider a test of H0 : μ = μ0 vs. H0 : μ < μ0. Suppose this test is based on a sample of size 8, that σ2 is known, and that the underlying population is normal. If a 5% significance level is desired, what would be the rejection rule for this test? Reject H0 if zobs < -1.645 Reject H0 if tobs < -1.894 Reject H0 if zobs < -1.960 Reject H0 if tobs < -2.306 2) Which...
1. For a particular scenario, we wish to test the hypothesis H0 : μ = 14.9....
1. For a particular scenario, we wish to test the hypothesis H0 : μ = 14.9. For a sample of size 35, the sample mean X̄ is 12.7. The population standard deviation σ is known to be 8. Compute the value of the test statistic zobs. (Express your answer as a decimal rounded to two decimal places.) 2. For a test of H0 : μ = μ0 vs. H1 : μ ≠ μ0, assume that the test statistic follows a...
1. a) For a test of H0 : μ = μ0 vs. H1 : μ ≠...
1. a) For a test of H0 : μ = μ0 vs. H1 : μ ≠ μ0, the value of the test statistic z obs is -1.46. What is the p-value of the hypothesis test? (Express your answer as a decimal rounded to three decimal places.) I got 0.101 b) Which of the following is a valid alternative hypothesis for a one-sided hypothesis test about a population mean μ? a μ ≠ 5.4 b μ = 3.8 c μ <...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample size of n = 25. Calculate bounds on the P -value for the following observed values of the test statistic (use however many decimal places presented in the look-up table. Answers are exact): (h) upper bound upon t0 = -1.3. THE ANSWER IS NOT 0.15 OR 0.05
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample size of n = 25. Calculate bounds on the P -value for the following observed values of the test statistic (use however many decimal places presented in the look-up table. Answers are exact): (a) lower bound and (b) upper bound upon t0 = -2.59, (c) lower bound and (d) upper bound upon t0 = -1.76, (e) lower bound and (f) upper bound upon t0...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0. Calculate the...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0. Calculate the P-value for the following observed values of the test statistic: (a)z0 = -2.31 (b)z0 = -1.76 (c)z0 = -2.50 (d)z0 = -1.48 (e)z0 = 0.63
1. A test of the null hypothesis H0: μ = μ0 gives test statistic z =...
1. A test of the null hypothesis H0: μ = μ0 gives test statistic z = 0.26. (Round your answers to four decimal places. (a) What is the P-value if the alternative is Ha: μ > μ0? (b)What is the P-value if the alternative is Ha: μ < μ0? (c)What is the P-value if the alternative is Ha: μ ≠ μ0? 2. A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.65. (a) What...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size...
Consider the following hypothesis test. H0: μ ≥ 10 Ha: μ < 10 The sample size is 125 and the population standard deviation is assumed known with σ = 5. Use α = 0.05. (a) If the population mean is 9, what is the probability that the sample mean leads to the conclusion do not reject H0?  (Round your answer to four decimal places.) (b) What type of error would be made if the actual population mean is 9 and we...
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.24....
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.24. (Round your answers to four decimal places.) (a) What is the P-value if the alternative is Ha: μ > μ0? (b) What is the P-value if the alternative is Ha: μ < μ0? (c) What is the P-value if the alternative is Ha: μ ≠ μ0?
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.46....
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.46. (Round your answers to four decimal places.) (a) What is the P-value if the alternative is Ha: μ > μ0? (b) What is the P-value if the alternative is Ha: μ < μ0? (c) What is the P-value if the alternative is Ha: μ ≠ μ0?