Question

A passenger arrives at a bus stop at 10am and waits for a bus that arrives...

A passenger arrives at a bus stop at 10am and waits for a bus that arrives at a time uniformly distributed between 10am and 10:30am. (a) What is the probability that the passenger waits more than 10 minutes? (b) What is the expected wait time? (c) What is the variance in wait time?

Homework Answers

Answer #1

From provided information.

A passenger arrives at a bus stop at 10am and waits for a bus that arrives at a time uniformly distributed between 10am and 10:30am

Therefore,

X ~ Uniform ( a, b )

Where, a = 0 and b = 30

X ~ Uniform ( 0 , 30 )

(a) What is the probability that the passenger waits more than 10 minutes?

Answer :

P( X > 10 ) = 1- P( X ≤ 10)

P( X > 10 ) = 1 - 0.333 using uniform probability calculator.

P( X > 10 )= 0.667

(b) What is the expected wait time?

Answer : E(X) = ( a + b) / 2

E(X) = ( 0+30)/2 = 15

Therefore, the expected wait time = 15 min

(c) What is the variance in wait time?

Answer : Var (X) = ( (b - a) ^2) / 12

Var (X) =((30-0)^2)/12

Var (X) = 900/ 12

Var (X) = 75 min 2

Therefore, the variance in wait time = 75 min2

Thank You ?

Please thumbs up.

​​​​​​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A passenger arrives at a bus stop(poisson distribution, lamda = 1min) and waits for a bus....
A passenger arrives at a bus stop(poisson distribution, lamda = 1min) and waits for a bus. Every bus runs at 10 mins Intervals and all people who have waited for the bus board the bus. If a passenger waits 1 min, it costs 1,000 dollars. So, if a passenger waits 2mins, it costs 2,000 dollars. (1)What's the expected cost per min? It's renewal reward process.
Alice takes the bus to school. The bus is scheduled to arrive at a bus stop...
Alice takes the bus to school. The bus is scheduled to arrive at a bus stop at 9:30am. In reality, the time the bus arrives is uniformly distributed between 9:28am and 9:40am. Let ? be the number of minutes it takes, starting from 9:28 am, for the bus to arrive to the bus stop. Then ? is uniformly distributed between 0 and 12 minutes. (a) If Alice arrives at the bus stop at exactly 9:33 am, what is the probability...
4.) SWA university provides bus service to students while they are on campus. A bus arrives...
4.) SWA university provides bus service to students while they are on campus. A bus arrives at the North main Street and College Drive stop every 30 minutes between 6am and 11am during weekdays. Students arrive at the bus stop at random times. A time that a student waits is uniformly distributed from 0 to 30 minutes. What is the probability a student will wait between 10 and 20 minutes? Please show work using Excel.
You arrive at a bus stop at 10 o’clock knowing that the bus arrives at the...
You arrive at a bus stop at 10 o’clock knowing that the bus arrives at the stop at some time uniformly distribution between 9:55 and 10:10. What is the probability that you will be board the bus within 2 minutes of your arrivals?
The amount of time, in minutes, that a person must wait for a bus is uniformly...
The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between 0 and 15 minutes, inclusive. 1. What is the average time a person must wait for a bus? 2. What is the probability that a person waits 12.5 minutes or less?
The actual arrival time of the scheduled 10:20 a.m. bus at the alpine and Broadway stop...
The actual arrival time of the scheduled 10:20 a.m. bus at the alpine and Broadway stop is a uniformly distributed random variable ranging from 10:18 to 10:23. (a) What is the average arrival time of the 10:20 a.m. bus? (b) The standard deviation? (c) What is the probability that the bus is early? (d) What is the probability that the bus arrives between 10:19 and 10:21 a.m.?
An airport provides complimentary shuttle bus service to downtown for arriving passengers. Passengers arrive randomly at...
An airport provides complimentary shuttle bus service to downtown for arriving passengers. Passengers arrive randomly at the shuttle pick up location. The shuttle picks up passengers exactly every 35 minutes. Therefore, the time that a passenger will need to wait for the shuttle is uniformly distributed between 0 minutes to 35 minutes. a. What is the probability that a random passenger will need to wait between 15 minutes and 30 minutes? Round your answer to three decimal places. Probability =...
The amount of time, in minutes, that a person must wait for a bus is uniformly...
The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between zero and 20 minutes, inclusive. What is the probability that a person waits fewer than 13.5 minutes? On the average, how long must a person wait? Find the mean, μ, and the standard deviation, σ. Find the 40th percentile. Draw a graph.
A bus arrives at a station every day at a random time between 1:00 P.M. and...
A bus arrives at a station every day at a random time between 1:00 P.M. and 1:30 P.M. (a) What is the probability that the person has to wait exactly 15 minutes for the bus? (b) What is the probability that the person has to wait between 15 and 20 minutes for the bus?
Suppose that buses are scheduled to arrive at a bus stop at noon but are always...
Suppose that buses are scheduled to arrive at a bus stop at noon but are always X minutes late, where X is an exponential random variable. Suppose that you arrive at the bus stop precisely at noon. (a) Compute the probability that you have to wait for more than five minutes for the bus to arrive. (b) Suppose that you have already waiting for 10 minutes. Compute the probability that you have to wait an additional five minutes or more.