Question

Let X and Y be independent random variables with density functions given by fX (x) =...

Let X and Y be independent random variables with density functions given by fX (x) = 1/2, −1 ≤ x ≤ 1 and fY (y) = 1/2, 3 ≤ y ≤ 5. Find the density function of X-Y.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let fX,Y be the joint density function of the random variables X and Y which is...
Let fX,Y be the joint density function of the random variables X and Y which is equal to fX,Y (x, y) = { x + y if 0 < x, y < 1, 0 otherwise. } Compute the probability density function of X + Y . Referring to the problem above, compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density...
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density functions fX(x) and fY(y) respectively. Further, the support for both of these marginal density functions is the interval (0,1). Which of the following statements is always true? (Note there may be more than one)    E[X^2Y^3]=(∫0 TO 1 x^2 dx)(∫0 TO 1 y^3dy)    E[X^2Y^3]=∫0 TO 1∫0 TO 1x^2y^3 f(x,y) dy dx    E[Y^3]=∫0 TO 1 y^3 fX(x) dx   E[XY]=(∫0 TO 1 x fX(x)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e^−x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y .
Let X and Y be two independent random variables. Given the marginal pdfs indicated below, find...
Let X and Y be two independent random variables. Given the marginal pdfs indicated below, find the cdf of Y/X. (Hint: Consider two cases, 0 ≤ w ≤ 1 and 1.) (a) fx (x) =1, 0 ≤ x ≤ 1, and fγ (y)=1, 0 ≤ y ≤ 1 (b) fx (x)=2x,0 ≤x ≤1, and fy(y)=2y, 0 ≤y ≤1
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x...
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x < 1, 0 < y < 1 0, otherwise. (a) Calculate k (b) Calculate marginal density function fX(x) (c) Calculate marginal density function fY (y) (d) Compute P(X < 0.5, Y < 0.1) (e) Compute P(X < Y ) (f) Compute P(X < Y |X < 0.5) (g) Are X and Y independent random variables? Show your reasoning (no credit for yes/no answer). (h)...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x),...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x), 0<x<2 1/4(x-2), 2<=x<4 0, otherwise. Let Y=|X-3|. Compute the probability density function of Y.
The joint probability density function of two random variables (X and Y) is given by fX,Y...
The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT