Question

Perform a hypothesis test for the mean for the following sample. The significance level alpha is...

Perform a hypothesis test for the mean for the following sample. The significance level alpha is 5%.

Sample: 7.9, 8.3, 8.4, 9.6, 7.7, 8.1, 6.8, 7.5, 8.6, 8, 7.8, 7.4, 8.4, 8.9, 8.5, 9.4, 6.9, 7.7.

Test if mean≠8.7.

Assume normality of the data.

1 Formulate the hypothesis by entering the corresponding signs: "<", ">", "=" or "≠" and numbers. Hint: in your answers use "<>" instead of "≠".

H0: mean  

H1:mean  

2 p-value (rounded to three decimal places):

3 Conclusions, based on the results, which of the following options is correct:  (type the corresponding capital letter, do not type the "dot" at the end)

  1. Reject H0 and accept H1 at 5% significance level.
  2. Accept H0 with 95% confidence.
  3. Do not reject H0 at 5% significance level and reserve judgement. We may retain H0 but with some unknown probability.
  4. Reject both, H0 and H1, the test has failed.
  5. Accept both, H0 and H1, the test has failed.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You perform a hypothesis test for a hypothesized population mean at the 0.01 level of significance....
You perform a hypothesis test for a hypothesized population mean at the 0.01 level of significance. Your null hypothesis for the two-sided test is that the true population mean is equal to your hypothesized mean. The two-sided p-value for that test is 0.023. Based on that p-value... A. you should accept the null hypothesis. B. the null hypothesis cannot be correct. C. you should reject the null hypothesis. D. you should fail to reject the null hypothesis.
Given contingency table for simultaneous occurance of two categorical random variables X (levels A,B,C) and Y...
Given contingency table for simultaneous occurance of two categorical random variables X (levels A,B,C) and Y (levels L1,L2,L3) L1 L2 L3 A 20 40 20 B 40 30 15 C 45 50 30 Determine the marginal probability P ( Y = L 1 ) =  (round to the third decimal place) Determine the conditional probability P ( X = A | Y = L 1 ) =  (round to the second decimal place) Use R to conduct a chi-square test of independence...
In order to conduct a hypothesis test for the population mean, a random sample of 20...
In order to conduct a hypothesis test for the population mean, a random sample of 20 observations is drawn from a normally distributed population. The resulting sample mean and sample standard deviation are calculated as 10.5 and 2.2, respectively. (You may find it useful to reference the appropriate table: z table or t table). H0: μ ≤ 9.6 against HA: μ > 9.6 a-1. Calculate the value of the test statistic. (Round all intermediate calculations to at least 4 decimal...
A researcher did a one-tailed hypothesis test using an alpha level of .01, H0 was rejected.A...
A researcher did a one-tailed hypothesis test using an alpha level of .01, H0 was rejected.A colleague analyzed the same data but used a two-tailed test with α=.05, H0 was failed to reject. Can both analyses be correct? Explain your answer.
On your first day on the job, your boss asks you to conduct a hypothesis test...
On your first day on the job, your boss asks you to conduct a hypothesis test about the mean dwell time of a new type of UAV. Before you arrived, an experiment was conducted on n= 5 UAVs (all of the new type) resulting in a sample mean dwell time of y-bar= 9.4 ℎours. The goal is to conclusively demonstrate, if possible, that the data supports the manufacturer’s claim that the mean dwell time is greater than 10 hours. Given...
For each situation, perform a hypothesis test for the population mean. Be sure to show the...
For each situation, perform a hypothesis test for the population mean. Be sure to show the null hypothesis H0 (with correct parameter), the alternative hypothesis H1, the P-level you get from ZTest, TTest, or 1-PropZTest (depending on whether you’re testing for µ or p, and whether σ is known or unknown), the result of the test (i.e. reject / do not reject H0) and the conclusion (interpret the result in English). Studies suggest that 10% of the world’s population is...
A sample of 42 observations is selected from a normal population. The sample mean is 28,...
A sample of 42 observations is selected from a normal population. The sample mean is 28, and the population standard deviation is 8. Conduct the following test of hypothesis using the 0.05 significance level. H0 : μ ≤ 27 H1 : μ > 27 a. Is this a one- or two-tailed test? b. What is the decision rule? (Round the final answer to 3 decimal places.) (Reject or Accept)  H0 and  (accept or reject)  H1 when z >___ . c. What is the...
A recent national survey found that high school students watched an average (mean) of 7.7 movies...
A recent national survey found that high school students watched an average (mean) of 7.7 movies per month with a population standard deviation of 0.9. The distribution of number of movies watched per month follows the normal distribution. A random sample of 46 college students revealed that the mean number of movies watched last month was 7.0. At the 0.05 significance level, can we conclude that college students watch fewer movies a month than high school students? 1.State the null...
A sample of 60 observations is selected from a normal population. The sample mean is 37,...
A sample of 60 observations is selected from a normal population. The sample mean is 37, and the population standard deviation is 8. Conduct the following test of hypothesis using the 0.10 significance level. H0 : μ ≤ 36 H1 : μ > 36 a. Is this a one- or two-tailed test? One-tailed test or Two-tailed test b. What is the decision rule? (Round the final answer to 3 decimal places.) (Reject or Accept)  H0 and  (accept or reject  H1 when z >...
Test whether μ1<μ2 at the alpha α equals =0.01 level of significance for the sample data...
Test whether μ1<μ2 at the alpha α equals =0.01 level of significance for the sample data shown in the accompanying table. Assume that the populations are normally distributed. Population 1 Population 2 n 33 25 x̅ 103.4 114.2 s 12.3 13.3 Determine the null and alternative hypothesis for this test. B. H0:μ1=μ2 H1:μ1<μ2 Determine the​ P-value for this hypothesis test. P=__?__ ​(Round to three decimal places as​ needed.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT