Question

Problem: Suppose that a couple will have 3 children. Assume that the probability of having a...

Problem: Suppose that a couple will have 3 children. Assume that the probability of having a girl is .487 and the probability of having a boy is .513. Also assume that x is a random variable for the number of girls and find the probability where x is 0, 1, 2, or 3. In order words, answer the following probability questions.

What is the probability that none of the three children will be girls?

What is the probability that exactly one of the three will be girls?

What is the probability that exactly two of the three will be girls?

What is the probability that all three of the children will be girls?

Homework Answers

Answer #1

a)


Here, n = 3, p = 0.487, (1 - p) = 0.513 and x = 0
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)

We need to calculate P(X = 0)
P(X = 0) = 3C0 * 0.487^0 * 0.513^3
P(X = 0) = 0.135


b)

Here, n = 3, p = 0.487, (1 - p) = 0.513 and x = 1
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)

We need to calculate P(X = 1)
P(X = 1) = 3C1 * 0.487^1 * 0.513^2
P(X = 1) = 0.3845
0


c)

Here, n = 3, p = 0.487, (1 - p) = 0.513 and x = 2
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)

We need to calculate P(X = 2)
P(X = 2) = 3C2 * 0.487^2 * 0.513^1
P(X = 2) = 0.365


d)


Here, n = 3, p = 0.487, (1 - p) = 0.513 and x = 3
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)

We need to calculate P(X = 3)
P(X = 3) = 3C3 * 0.487^3 * 0.513^0
P(X = 3) = 0.1155
0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem: Suppose that a couple will have 3 children. Assume that the probability of having a...
Problem: Suppose that a couple will have 3 children. Assume that the probability of having a girl is .487 and the probability of having a boy is .513. Also assume that x is a random variable for the number of girls and find the probability where x is 0, 1, 2, or 3. In order words, answer the following probability questions. What is the probability that none of the three children will be girls? What is the probability that exactly...
Boys and Girls: Suppose a couple plans to have two children and the probability of having...
Boys and Girls: Suppose a couple plans to have two children and the probability of having a girl is 0.50. (a) What is the sample space for the gender outcomes? {bb, bg, gb, gg}{bb, bg, gg}    {bb, gg}{b,g} (b) What is the probability that the couple has one boy and one girl? 1 2 3 4       1 4 1 3 (c) What is the probability that the couple will have at least one girl? 1 4 1 2       3...
A couple is planning on having 5 children and the probability of having a girl is...
A couple is planning on having 5 children and the probability of having a girl is 0.517. If we define the random variable to be the number of girls in 5 births, then the probability the couple will have less than 3 girls is 0.468. Is the event the couple will have less than 3 girls an unusual event? Briefly explain.
1. If a couple plans to have 4 children, what is the probability that there will...
1. If a couple plans to have 4 children, what is the probability that there will be at least one girl? Assume boys and girls are equally likely. 2. Find the probability of a couple having a baby boy when their 4th child is born, given that the first three children were all boys. Assume boys and girls are equally likely.
A couple plans to have children until they get a​ girl, but they agree they will...
A couple plans to have children until they get a​ girl, but they agree they will not have more than three​ children, even if all are boys. Assume that the probability of having a girl is 0.50.5. Let X be a random variable indicating how many children the couple will have. Find the standard deviation of the random variable X. x 11 22 33 ​P(X=​x) 0.5000.500 0.2500.250 0.250
1) A certain couple is equally likely to have either a boy child or a girl...
1) A certain couple is equally likely to have either a boy child or a girl child. If the family has three children, let X denote the number of girls. (10-points) a) Identify the possible values of the random variable X. b) Determine the probability distribution of X c) Use random variable notation to represent the event that the couple has at most 2 girls AND also determine that probability please explain and write out each step you do.
A couple plans to have seven children. Find the probability that they will have more than...
A couple plans to have seven children. Find the probability that they will have more than two girls. (Assume the probability of having a girl is 0.50. Round your answer to four decimal places.)
A married couple decides that they will continue to have children until they have 3 boys....
A married couple decides that they will continue to have children until they have 3 boys. It is assumed that having a boy or a girl is equally likely. (a) What is the probability that the couple has 5 children until they have 3 boys? (b) How many children does this couple expect to have until they have 3 boys?
A young couple decides to keep having children until they have a girl. Assuming a boy...
A young couple decides to keep having children until they have a girl. Assuming a boy or a girl are equi-probable possibilities in the birth of every child and the gender of every child is independent of the previous, what would be the expected number of children the couple would have when the first girl is born? What is the probability that the fourth child would be the first girl?
A couple wants to have three children. A. Construct a probability distribution for the number of...
A couple wants to have three children. A. Construct a probability distribution for the number of girls in three births B. Probability of at most 1 girl C. Probability of more than 2 girls D. Probability of at least 1 girl.