Question

Z is a standard normal random variable. Compute the following probabilities.

a. |
P(-1.33 Z 1.67) |

b. |
P(1.23 Z 1.55) |

c. |
P(Z 2.32) |

d. |
P(Z -2.08) |

e. |
P(Z -1.08) |

Answer #1

Solution :-

a)

P ( - 1.33 < Z < 1.67 ) = P ( Z < 1.67 ) - P ( Z < - 1.33 )

By Using Standard Normal Table,

P ( - 1.33 < Z < 1.67 ) = 0.9525 - 0.0918

**P ( - 1.33 < Z < 1.67 ) = 0.8607**

**---------------------------------**

**b)**

P ( 1.23 < Z < 1.55 ) = P ( Z < 1.55 ) - P ( Z < 1.23 )

By Using Standard Normal Table,

P ( 1.23 < Z < 1.55 ) = 0.9394 - 0.8907

**P ( 1.23 < Z < 1.55 ) = 0.0487**

---------------------------------

c)

P ( Z > 2.32 ) = 1 - P ( Z < 2.32 )

By Using Standard Normal Table,

P ( Z > 2.32 ) = 1 - 0.9898

**P ( Z > 2.32 ) = 0.0102**

**---------------------------------**

d)

By Using Standard Normal Table,

**P ( Z < - 2.08 ) = 0.0188**

------------------------------

e)

By Using Standard Normal Table,

**P ( Z < - 1.08 ) = 0.1401**

Given that z is a standard normal random variable, compute the
following probabilities (to 4 decimals). P(-1.98 ≤ z ≤ 0.48) P(0.55
≤ z ≤ 1.29) P(-1.73 ≤ z ≤ -1.08)

Given that z is a standard normal random variable, compute the
following probabilities. (Round your answers to four decimal
places.)
(a)
P(z ≤ −3.0)
(b)
P(z ≥ −3)
(c)
P(z ≥ −1.3)
(d)
P(−2.4 ≤ z)
(e)
P(−1 < z ≤ 0)

Given that z is a standard normal random variable, compute the
following probabilities. Round your answers to 4 decimal
places.
a. P(0 _< z _< 0.51)
b. P( -1.61 _< z _< 0)
c. P( z > 0.30)
d. P( z _> -0.31)
e. P( z < 2.06)
f. P( z _< -0.61)

Find the probabilities associated with the standard normal
random variable Z:
a) P (Z> 2.54)
b) P (-3.2 <Z <3.2)
c) P (Z <1.94)
d) P (Z> 2.88)
e) P (Z> 3.15)

Given that Z is a standard normal random variable, compute the
following probabilities (to 4 decimal places).
a. P(-1.98 ≤ z ≤ 0.49)
b. P(.55 ≤ z ≤ 1.28)
c. P(-1.79 ≤ z ≤ -1.09)

Given that z is a standard normal random variable, use the Excel
to compute the following probabilities.
a) P(z > 0.5)
b) P(z ≤ −1)
c) P(1≤ Z ≤ 1.5)
d) P(0.5 ≤ z ≤ 1.25)
e) P(0 < z < 2.5)

Given that z is a standard normal random variable,
compute the following probabilities. (Round your answers to four
decimal places.)(a)P(0 ≤ z ≤ 0.86)(b)P(−1.54 ≤ z ≤ 0)(c)P(z > 0.44)(d)P(z ≥ −0.22)(e)P(z < 1.30)(f)P(z ≤ −0.75)Also..A population has a mean of 128 and a standard deviation of 32.
Suppose a sample of size 64 is selected andxis used to estimate μ. (Round your answers to four
decimal places.)(a)What is the probability that the sample mean will be within ±5
of...

Suppose that Z represents a standard normal random variable.
Compute the following probabilities
Q6. P(0≤Z≤1)
a) 0.34 b) 0.45 c) 0.39 d) 0.90
Q7. P(0≤Z≤1.65)
a) 0.34 b) 0.45 c) 0.39 d) 0.90
Q8. P(-1≤Z≤0)
a) 0.34 b) 0.45 c) 0.39 d) 0.90
Q9. P(-1.28≤Z≤0)
a) 0.34 b) 0.45 c) 0.39 d) 0.90
Q10. P(-1.65≤Z≤1.65)
a) 0.34 b) 0.45 c) 0.39 d) 0.90
Q11. P(-1.28≤Z≤1.28)
a) 0.34 b) 0.45 c) 0.79 d) 0.90

Given that Z is a standard normal random variable, compute the
following probabilities. Draw a curve and shade appropriate region.
Use TI-83 calculator to find the probabilities
(i) P( z ≤ 1.0)
(ii) P( z ³ 1.0)
(iii) P( z ≤ -1.0)
(iv) P(-1.0 ≤ z ≤ 1.0)
(v) P(-1.6 ≤ z ≤ 1.2)

Find the following probabilities for a standard normal random
variable z : p(z > 1.53) with steps

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 9 minutes ago

asked 13 minutes ago

asked 33 minutes ago

asked 35 minutes ago

asked 38 minutes ago

asked 43 minutes ago

asked 48 minutes ago

asked 52 minutes ago

asked 1 hour ago