Find the mean, variance, and standard deviation from the sample data.
x f
0-3 42
4-7 84
8-11 55
12-15 83
16-19 112
20-23 24
Solution:
Class (1) |
Frequency (f) (2) |
Mid value (x) (3) |
f⋅x (4)=(2)×(3) |
f⋅x2=(f⋅x)×(x) (5)=(4)×(3) |
0-3 | 42 | 1.5 | 63 | 94.5 |
4-7 | 84 | 5.5 | 462 | 2541 |
8-11 | 55 | 9.5 | 522.5 | 4963.75 |
12-15 | 83 | 13.5 | 1120.5 | 15126.75 |
16-19 | 112 | 17.5 | 1960 | 34300 |
20-23 | 24 | 21.5 | 516 | 11094 |
n=400 | ∑f⋅x=4644 | ∑f⋅x2=68120 |
Mean ˉx=∑fxn
=4644/400
=11.61
Sample Variance S2=∑f⋅x2-(∑f⋅x)2nn-1
=68120-(4644)2400/399
=68120-53916.84/399
=14203.16/399
=35.5969
Sample Standard deviation S=√∑f⋅x2-(∑f⋅x)2nn-1
=√68120-(4644)2400/399
=√68120-53916.84/399
=√14203.16/399
=√35.5969
=5.9663
Get Answers For Free
Most questions answered within 1 hours.