Question

7. Suppose that random variables X and Y have a joint density function given by: f(x,...

7. Suppose that random variables X and Y have a joint density function given by: f(x, y) = ? + ? 0 ≤ ?≤ 1, 0 ≤ ? ≤ 1

(a) Find the density functions of X and Y, f(x) and f(y).

(b) Find E[X] and Var(Y).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .
Problem 4 The joint probability density function of the random variables X, Y is given as...
Problem 4 The joint probability density function of the random variables X, Y is given as f(x,y)=8xy if 0 ≤ y ≤ x ≤ 1, and 0 elsewhere. Find the marginal probability density functions. Problem 5 Find the expected values E (X) and E (Y) for the density function given in Problem 4. Problem 7. Using information from problems 4 and 5, find Cov(X,Y).
Suppose that the random variables  X  and Y  have the following joint probability density function. f ...
Suppose that the random variables  X  and Y  have the following joint probability density function. f (x, y)  =  ce−9x − 7y,    0  <  y  <  x. (a) Find the value of c. (b) Find P(X  <1/6   , Y  <  1)
Suppose that the random variables  X  and Y  have the following joint probability density function. f ...
Suppose that the random variables  X  and Y  have the following joint probability density function. f (x, y)  =  ce−5x − 7y,    0  <  y  <  x. (a) Find the value of c. (b) Find P(X  < 1/3  , Y  <  2)
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
The random variables X and Y have a joint density function given by f(x, y) =...
The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < ∞, 0 ≤ y ≤ x , otherwise. (a) Compute Cov(X, Y ). (b) Find E(Y | X). (c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ). How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?
The joint probability density function of two random variables X and Y is f(x, y) =...
The joint probability density function of two random variables X and Y is f(x, y) = 4xy for 0 < x < 1, 0 < y < 1, and f(x, y) = 0 elsewhere. (i) Find the marginal densities of X and Y . (ii) Find the conditional density of X given Y = y. (iii) Are X and Y independent random variables? (iv) Find E[X], V (X) and covariance between X and Y .
Suppose X and Y are continuous random variables with joint density function f(x,y) = x +...
Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x...
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT