Question

Random and independent samples of 80 recent prime time airings from each of two major networks...

Random and independent samples of 80 recent prime time airings from each of two major networks have been considered. The first network aired a mean of 110.6 commercials during prime time, with a standard deviation of 4.7 commercials. The second network aired a mean of 109.4 commercials, with a standard deviation of 4.8 commercials. As the sample sizes are quite large, the population standard deviations can be estimated using the sample standard deviations. Construct a 90% confidence interval for −μ1μ2, the difference between the mean number of commercials μ1 aired during prime time by the first network and the mean number of commercials μ2 aired during prime time by the second network. Then complete the table below. what is the lower limit of the 90% confidence interval? what is the upper limit of the 90% confidence interval?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Random and independent samples of 100 recent prime time airings from each of two major networks...
Random and independent samples of 100 recent prime time airings from each of two major networks have been considered. The first network aired a mean of 110.6 commercials during prime time, with a standard deviation of 4.6 commercials. The second network aired a mean of 109.4 commercials, with a standard deviation of 4.5 commercials. As the sample sizes are quite large, the population standard deviations can be estimated using the sample standard deviations. Construct a 95% confidence interval for −μ1μ2...
1. The following data represent petal lengths (in cm) for independent random samples of two species...
1. The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.9 6.1 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.9 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.5 1.9 1.4 1.5 1.5...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
The human resources department of a consulting firm gives a standard creativity test to a randomly...
The human resources department of a consulting firm gives a standard creativity test to a randomly selected group of new hires every year. This year, 65 new hires took the test and scored a mean of 112.9 points with a standard deviation of 16.5. Last year, 60 new hires took the test and scored a mean of 117.1 points with a standard deviation of 19.2. Assume that the population standard deviations of the test scores of all new hires in...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=40,x¯1=50.3,x¯2=73.8,s1=6s2=6.1 Find a 98% confidence interval for the difference μ1−μ2 of the population means, assuming equal population variances.
A random sample of 49 measurements from a population with population standard deviation σ1 = 5...
A random sample of 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 9. An independent random sample of 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 12. Test the claim that the population means are different. Use level of significance 0.01. (a) Compute the corresponding sample distribution value. (Test the difference μ1 − μ2. Round your answer...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=45,n2=40,x¯1=50.7,x¯2=71.9,s1=5.4s2=10.6 n 1 =45, x ¯ 1 =50.7, s 1 =5.4 n 2 =40, x ¯ 2 =71.9, s 2 =10.6 Find a 92.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances.
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.5 6.2 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.8 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.4 1.6 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.0 5.7 6.2 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.8 5.2 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.6 1.6 1.4 1.5 1.5 1.6...