Question

1) A 10-sided die is rolled infinitely many times. Let X be the number of rolls...

1) A 10-sided die is rolled infinitely many times. Let X be the number of rolls up to and including the first roll that comes up 2. What is Var(X)?

Answer: 90.0

2) A 14-sided die is rolled infinitely many times. Let X be the sum of the first 75 rolls. What is Var(X)?

Answer: 1218.75

3) A 17-sided die is rolled infinitely many times. Let X be the average of the first 61 die rolls. What is Var(X)?

Answer: 0.3934

I know the answers but don't know how to get them. Please show work

Homework Answers

Answer #1

1)

here this is geometric distribution with paramter p=1/10 (cause each number has equal probability)

Var(X) =(1-p)/p2 =(1-1/10)/(1/10)2 =100*9/10=90

2)

expected value on a single roll E(X)=(1+2+3+4+5+6+7+8+9+10+11+12+13+14)/14 =7.5

and E(X2)=(12+22+32+42+52+62+72+82+92+102+112+122+132+142)/14=72.5

therefore variance of single roll = E(X2)-(E(X))2 =16.25

for 75 rolls variance of sum =16.25*(75)=1218.75

3)

as above expected value E(X)=9

E(X2)=105

Var(X)=24

therfore variance of average of 61 die rolls=24/61=0.3934

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A die is rolled six times. (a) Let X be the number the die obtained on...
A die is rolled six times. (a) Let X be the number the die obtained on the first roll. Find the mean and variance of X. (b) Let Y be the sum of the numbers obtained from the six rolls. Find the mean and the variance of Y
A 6-sided die rolled twice. Let E be the event "the first roll is a 1"...
A 6-sided die rolled twice. Let E be the event "the first roll is a 1" and F the event "the second roll is a 1". Find the probability of showing a 1 on both rolls. Write your answer as a reduced fraction.
A fair die is rolled until the number 6 first appears. Let N be the number...
A fair die is rolled until the number 6 first appears. Let N be the number of rolls, including the last roll. Given that we have rolled at least 4 times, what is the expected number of rolls? This one's killing me
You have a 4 sided die and 10 sided die that are rolled 50 times. What...
You have a 4 sided die and 10 sided die that are rolled 50 times. What is the theoretical probability that the small die is odd, the sum of the numbers is 5, the same # appears on both, the # on the larger die is > than the # on the smaller die.
Assume that a fair six-sided die is rolled 9 times, and the roll is called a...
Assume that a fair six-sided die is rolled 9 times, and the roll is called a success if the result is in {1,2}{1,2}. What is the probability that there are exactly 4 successes or exactly 4 failures in the 9 rolls?
A 10 sided die with sides numbered 0 through 9 is rolled 5 times. Let X...
A 10 sided die with sides numbered 0 through 9 is rolled 5 times. Let X be the number of zeros rolled. (a) Find the probability that exactly 2 zeros are rolled. (b) Find the probability that no less than 4 zeros are rolled. (c) Find the mean and the variance of X.
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A fair six-sided die is rolled 10 independent times. Let X be the number of ones...
A fair six-sided die is rolled 10 independent times. Let X be the number of ones and Y the number of twos. (a) (3 pts) What is the joint pmf of X and Y? (b) (3 pts) Find the conditional pmf of X, given Y = y. (c) (3 pts) Given that X = 3, how is Y distributed conditionally? (d) (3 pts) Determine E(Y |X = 3). (e) (3 pts) Compute E(X2 − 4XY + Y2).
A fair 4-sided die is rolled 7 times. (a) Find the probability that the side 1...
A fair 4-sided die is rolled 7 times. (a) Find the probability that the side 1 comes up exactly 3 times. (b) Find the probability that there is at least one side that comes up exactly 3 times.
You roll a fair 6 sided die 5 times. Let Xi be the number of times...
You roll a fair 6 sided die 5 times. Let Xi be the number of times an i was rolled for i = 1, 2, . . . , 6. (a) What is E[X1]? (b) What is Cov(X1, X2)? (c) Given that X1 = 2, what is the probability the first roll is a 1? (d) Given that X1 = 2, what is the conditional probability mass function of, pX2|X1 (x2|2), of X2? (e) What is E[X2|X1]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT