Question

Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2....

Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2. The sample means have been calculated to be x¯1=10.7 and x¯2=8.3. From previous experience with these populations, it is known that the variances are σ21=30 and σ22=23.

(a) Determine the rejection region for the test of

H0:(μ1−μ2)=2.77

H1:(μ1−μ2)>2.77

using α=0.04.

z > __________

(b) Compute the test statistic.

z =

The final conclusion is
A. We can reject H0.
B. There is not sufficient evidence to reject H0.

(c)   Construct a 96 % confidence interval for (μ1−μ2).

__________<(μ1−μ2)<____________

Homework Answers

Answer #1

Round all the answers as per your requirement. Thank you...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1 point) Two independent samples have been selected, 66 observations from population 1 and 51 observations...
(1 point) Two independent samples have been selected, 66 observations from population 1 and 51 observations from population 2. The sample means have been calculated to be x¯1=10.5 and x¯2=12.8. From previous experience with these populations, it is known that the variances are σ2/1=40 and σ2/2=36. (a)    Find σ(x¯1−x¯2). answer: (b)    Determine the rejection region for the test of H0:(μ1−μ2)=3.94H0:(μ1−μ2)=3.94 and Ha:(μ1−μ2)>3.94Ha:(μ1−μ2)>3.94 Use α=0.02 z> (c)    Compute the test statistic. z= (d)    Construct a 9898 % confidence interval for (μ1−μ2)(μ1−μ2).
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from...
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from populations 1 and 2 produced 388 and 188 successes, respectively. (a) Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.04 test statistic = rejection region |z|> The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.   B. We can reject the null hypothesis that (p1−p2)=0 and support that (p1−p2)≠0. (b) Test H0:(p1−p2)≤0 against Ha:(p1−p2)>0. Use α=0.03 test statistic = rejection...
In order to compare the means of two populations, independent random samples of 282 observations are...
In order to compare the means of two populations, independent random samples of 282 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=3 x¯2=4 s1=110 s2=200 (a)    Use a 97 % confidence interval to estimate the difference between the population means (?1−?2)(μ1−μ2). _____ ≤(μ1−μ2)≤ ______ (b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using ?=0.03, give the following: (i)    the test statistic z= (ii)    the positive critical z score     (iii)    the negative critical z score     The...
Two independent random samples have been selected. 100 observations from population 1 and 100 from population...
Two independent random samples have been selected. 100 observations from population 1 and 100 from population 2. Sample means ¯x_1=70 and ¯x_2=50 were obtained. From previous experience with these populations, it is known that the variances are σ_1^2=100 and σ_2^2=64. Construct a 95% confidence interval for (μ_1-μ_2 ). (A) 20±2.15 (B) 20±2.51 (C) 20±2.35 (D) 20±1.15
A sample of 69 observations is selected from one population with a population standard deviation of...
A sample of 69 observations is selected from one population with a population standard deviation of 0.79. The sample mean is 2.69. A sample of 48 observations is selected from a second population with a population standard deviation of 0.67. The sample mean is 2.61. Conduct the following test of hypothesis using the 0.05 significance level: H0: μ1 – μ2≤ 0 H1: μ1 – μ2 > 0 a. State the decision rule. (Round the final answer to 2 decimal places.)...
A sample of 65 observations is selected from one population with a population standard deviation of...
A sample of 65 observations is selected from one population with a population standard deviation of 0.78. The sample mean is 2.69. A sample of 54 observations is selected from a second population with a population standard deviation of 0.69. The sample mean is 2.57. Conduct the following test of hypothesis using the 0.1 significance level: H0: μ1 – μ2≤ 0 H1: μ1 – μ2 > 0 a. Is this a one-tailed or a two-tailed test? This is a ___...
A sample of 57 observations is selected from one population with a population standard deviation of...
A sample of 57 observations is selected from one population with a population standard deviation of 0.73. The sample mean is 2.62. A sample of 54 observations is selected from a second population with a population standard deviation of 0.64. The sample mean is 2.5. Conduct the following test of hypothesis using the 0.1 significance level: H0: μ1 – μ2 ≤ 0 H1: μ1 – μ2 > 0 a. Is this a one-tailed or a two-tailed test? This is a...
A sample of 36 observations is selected from one population with a population standard deviation of...
A sample of 36 observations is selected from one population with a population standard deviation of 3.8. The sample mean is 100.5. A sample of 50 observations is selected from a second population with a population standard deviation of 4.4. The sample mean is 99.3. Conduct the following test of hypothesis using the 0.02 significance level.    H0 : μ1 = μ2 H1 : μ1 ≠ μ2 (a) This is a (Click to select)twoone-tailed test. (b) State the decision rule....
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population...
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population variances are equal and the populations are normally distributed. Complete parts below. H0: μ1−μ2 = 0 x overbar 1 = 14.8 x overbar 2 = 13.0 H1: μ1−μ2 ≠ 0 s1= 2.8 s2 = 3.2 n1 = 21 n2 = 15 a.) what is the test statistic? b.) the critical values are c.) what is the p value?
A sample of 36 observations is selected from one population with a population standard deviation of...
A sample of 36 observations is selected from one population with a population standard deviation of 3.8. The sample mean is 100.0. A sample of 47 observations is selected from a second population with a population standard deviation of 4.4. The sample mean is 98.0. Conduct the following test of hypothesis using the 0.10 significance level. H0 : μ1 = μ2 H1 : μ1 ≠ μ2 Is this a one-tailed or a two-tailed test? One-tailed test Two-tailed test State the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT