Question

Given the table below, test the hypothesis that μ1 < μ2 at the α = .05...

Given the table below, test the hypothesis that μ1 < μ2 at the α = .05 level.

Coke | n1 = 36 | x--1 = 12.09 | s1 =.11 |

Pepsi   | n2 = 36 | x—2 = 12.29 | s2 = .08 |     ​

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4) Test the hypothesis that μ1 ≠ μ2. Two samples are randomly selected from each population....
4) Test the hypothesis that μ1 ≠ μ2. Two samples are randomly selected from each population. The sample statistics are given below. Use α = 0.02. n1 = 51 x1=1 s1 = 0.76 n2 = 38 x2= 1.4 s2 = 0.51 STEP 1: Hypothesis: Ho:________________ vs H1: ________________ STEP 2: Restate the level of significance: ______________________ STEP 4: Find the p-value: ________________________ (from the appropriate test on calc) STEP 5: Conclusion:
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.7 s2 = 8.2 (a) What is the value of the test statistic? (Use x1 − x2.  Round your answer to three decimal places.) (b) What is the degrees of...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.6 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.5 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Consider the following hypothesis test.                         H0: μ1 - μ2 ≤ 0          &nbs
Consider the following hypothesis test.                         H0: μ1 - μ2 ≤ 0                         Ha: μ1 - μ2 > 0                         n1 = 40,              1 = 25.2,                  σ1    = 5.2                                            n2 = 50,              2 = 22.8,                  σ2   = 6.0             a. What is the value of the test statistic?             b. What is the p-value?             c. With α = 0.05, what is your hypothesis-testing conclusion?
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 >...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 > 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 25.7 x2 = 22.8 σ1 = 5.7 σ2 = 6 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 80 n2 = 70 x1 = 104 x2 = 106 σ1 = 8.4 σ2 = 7.5 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Use the t-distribution to find a confidence interval for a difference in means μ1-μ2 given the...
Use the t-distribution to find a confidence interval for a difference in means μ1-μ2 given the relevant sample results. Give the best estimate for μ1-μ2, the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A 95% confidence interval for μ1-μ2 using the sample results x¯1=5.1, s1=2.4, n1=11 and x¯2=4.5, s2=2.5, n2=8 Best estimate = ? Margin of error = ? Confidence interval: ____ to _____
Suppose μ1 and μ2 are two mean stopping distance of km/hr for 50km/hr for cars of...
Suppose μ1 and μ2 are two mean stopping distance of km/hr for 50km/hr for cars of a certain type equipped with two different types of braking systems. Use the two sample t test at significance level of 0.01 to test. H0: μ1 - μ2 = 0 Verses. H1: μ1 - μ2 < 0 for the following statistics. n1 = 6 x ̅1 = 116 S1 = 5.0 n2. = 6 x ̅2 = 129 S2 = 5.5   
Use the t-distribution to find a confidence interval for a difference in means μ1-μ2 given the...
Use the t-distribution to find a confidence interval for a difference in means μ1-μ2 given the relevant sample results. Give the best estimate for μ1-μ2, the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed. A 99% confidence interval for μ1-μ2 using the sample results x¯1=75.9, s1=9.3, n1=25 and x¯2=65.8, s2=7.6, n2=20 Best estimate =? Margin of error =? Confidence interval: _____to _______