Question

Let X1,X2,...,Xn be i.i.d. (independent and identically distributed) from the uniform distribution U(μ,μ+1) where μ∈R is...

  1. Let X1,X2,...,Xn be i.i.d. (independent and identically distributed) from the uniform distribution U(μ,μ+1) where μ∈R is unknown. Find a minimal sufficient statistic for μ parameter.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these...
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these Xi ’s are assumed to be normally distributed with Xi ∼ N(θci , σ^2 ), i = 1, 2, . . ., n, where θ is an unknown parameter, σ^2 is known, and ci ’s are some known constants (not all ci ’s are zero). We wish to estimate θ. (a) Write down the likelihood function, i.e., the joint density function of (X1, ....
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0,...
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0, θ). (a) Prove that T(X1, · · · , Xn) = X(n) is minimal sufficient for θ. (X(n) is the largest order statistic, i.e., X(n) = max{X1, · · · , Xn}.) (b) In addition, we assume θ ≥ 1. Find a minimal sufficient statistic for θ and justify your answer.
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta a). find sampling...
let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta a). find sampling distribution of the first order statistic b). Is this an exponential distribution if yes why c). If n=5 and beta=2 then find P(Y1<=3.6) d). find the probability distribution of Y1=max(X1, X2, ..., Xn)
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for (µ1µ2).
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
If I know that (X1, X2, ...Xn) is an i.i.d sample of an exponential distribution, how...
If I know that (X1, X2, ...Xn) is an i.i.d sample of an exponential distribution, how can I get a distribution of theta (the parameter for the pdf, or the expectation of the distribution) with x bar?
let X1, . . . , Xn i.i.d. Gamma(α, β), β > 0 known and α...
let X1, . . . , Xn i.i.d. Gamma(α, β), β > 0 known and α > 0 unknown. (a) Find the sufficient statistic for α (b) Use the sufficient statistic found in (a) to find the MVUE of α n . b) Use the sufficient statistic found in (a) to find the MVUE of α n
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with unknown α and unknown β. Find the method of moments estimators for α and β