Question

Answer the folowing questions :- 1. In the [-1.2] range a uniform random X variable is...

Answer the folowing questions :-

1. In the [-1.2] range a uniform random X variable is given,
    when Y=x^2+1   transformation is done , what is The expected value of Y , E[Y] .

2. A continuous X variable is the Poisson distribution , if The quadratic expected value of this distribution is E[X^2] =4 what is the variance of this distribution ،var(x) .

Homework Answers

Answer #1

1. Expected value of Y is 2, i.e. E(Y)= 2

2. Var(X)= 1.5615

Complete solution is given in attached images:

Thank You.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A continuous random variable X has a uniform distribution in the range of values from exactly...
A continuous random variable X has a uniform distribution in the range of values from exactly 4 to exactly 8. a.) What is the expected value of this random variable? b.) State completely (for all values of x) the cumulative distribution function F(x) of the distribution. c.) What it is the probability that the next result for this random variable will be between 4.6 and 6.1? d.) What is the probability that the next result will be between 3.6 and...
The standard normal transformation, ?=?−?x/?x, transforms any normal random variable (?) to a standard normal random...
The standard normal transformation, ?=?−?x/?x, transforms any normal random variable (?) to a standard normal random variable (?), which has a mean of 0 and a variance of 1. Consider a standard continuous uniform random variable (?), which is a continuous uniform random variable with a mean of 0 and a variance of 1. What is the equation for a standard continuous uniform transformation that transforms any ?~?(?,?) to ??
The random variable W = X – 3Y + Z + 2 where X, Y and...
The random variable W = X – 3Y + Z + 2 where X, Y and Z are three independent Normal random variables, with E[X]=E[Y]=E[Z]=2 and Var[X]=9,Var[Y]=1,Var[Z]=3. The pdf of W is: Uniform Poisson Binomial Normal None of the other pdfs.
Calculate the probability that X ≤ E[X] assuming that: (a) X is a continuous random variable...
Calculate the probability that X ≤ E[X] assuming that: (a) X is a continuous random variable with uniform distribution; (b) X is a continuous random variable with an Exp(1) distribution; (c) X is a discrete random variable with a Poisson(1) distribution. (d) X is continuous random variable with standard normal distribution.
A Lee uniform random variable (L), which is a continuous uniform random variable with a mean...
A Lee uniform random variable (L), which is a continuous uniform random variable with a mean of 0 and a standard deviation of 1. What is the equation for a Lee transformation, which transforms the continuous uniform random variable X~U(t, w) into L?
If X is a discrete random variable with uniform distribution, where f(x) > 0 when x...
If X is a discrete random variable with uniform distribution, where f(x) > 0 when x = -1, 0, and 1(f(x) = 0, otherwise). If Y is another discrete random variable with identical distribution as X. In addition, X and Y are independent. 1. Please find the probability distribution of (X + Y)/2 and plot it. 2. Please find variance of (X + Y)/2
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE...
(a) TRUE / FALSE If X is a random variable, then (E[X])^2 ≤ E[X^2]. (b) TRUE / FALSE If Cov(X,Y) = 0, then X and Y are independent. (c) TRUE / FALSE If P(A) = 0.5 and P(B) = 0.5, then P(AB) = 0.25. (d) TRUE / FALSE There exist events A,B with P(A)not equal to 0 and P(B)not equal to 0 for which A and B are both independent and mutually exclusive. (e) TRUE / FALSE Var(X+Y) = Var(X)...
A random variable Y follows a continuous uniform distribution from 0 to 4.   Express each question...
A random variable Y follows a continuous uniform distribution from 0 to 4.   Express each question using proper probability notation. Find probability by applying the area law i.e. draw the distribution, mark the event, shade the area, find the amount of shaded area. What is the probability random variable Y takes a value less than 3.2? P[Y < 3.2] =   What is the probability random variable Y falls below 1.2? P[Y < 1.2] =   What is the probability random variable...
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 <...
Question 3 Suppose the random variable X has the uniform distribution, fX(x) = 1, 0 < x < 1. Suppose the random variable Y is related to X via Y = (-ln(1 - X))^1/3. (a) Demonstrate that the pdf of Y is fY (y) = 3y^2 e^-y^3, y>0. (Hint: Work out FY (y)) (b) Determine E[Y ]. (Hint: Use Wolfram Alpha to undertake the integration.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT