In the following regression, X = total assets ($
billions), Y = total revenue ($ billions), and n
= 64 large banks.
R2 | 0.519 |
Std. Error | 6.977 |
n | 64 |
ANOVA table | |||||||||||||||
Source | SS | df | MS | F | p-value | ||||||||||
Regression | 3,260.0981 | 1 | 3,260.0981 | 66.97 | 1.90E-11 | ||||||||||
Residual | 3,018.3339 | 62 | 48.6828 | ||||||||||||
Total | 6,278.4320 | 63 | |||||||||||||
Regression output | confidence interval | |||||||||||||||||
variables | coefficients | std. error | t Stat | p-value | Lower 95% | Upper 95% | ||||||||||||
Intercept | 6.5763 | 1.9254 | 3.416 | .0011 | 2.7275 | 10.4252 | ||||||||||||
X1 | 0.0452 | 0.0055 | 8.183 | 1.90E-11 | 0.0342 | 0.0563 | ||||||||||||
(a) Write the fitted regression equation.
yˆy^ = _________ + _____________ X
(b-1) State the degrees of freedom for a
two-tailed test for zero slope, and use Appendix D to find the
critical value at α = .05. (Round t
critical value to 3 decimal places.)
Degrees of freedom | |
tcrit | ± |
(c-1) Calculate t. (Round your
answer to 3 decimal places.)
tcalc _____________
(e-1) Calculate t2 and
F. (Round your answers to the nearest whole
number.)
t2 | |
Fcalc |
(e-2) Calculate R2
(e-3) What is the percentage of variation in total
revenue explained by total assets? (Round your answer to 1
decimal place.)
The percentage of variation in total revenue explained by total
assets is %-----
I have answered the question below
Please up vote for the same and thanks!!!
Do reach out in the comments for any queries
Answer:
ANOVA table |
||||||
Source |
SS |
df |
MS |
F |
p-value |
|
Regression |
3,260.0981 |
1 |
3,260.0981 |
66.97 |
1.90E-11 |
|
Residual |
3,018.3339 |
62 |
48.6828 |
|||
Total |
6,278.4320 |
63 |
||||
Regression Output |
confidence interval |
|||||
variables |
coefficients |
std. error |
t(df = 62) |
p-value |
95% lower |
95% upper |
Intercept |
6.5763 |
1.9254 |
3.416 |
.0011 |
2.7275 |
10.4252 |
X1 |
0.0452 |
0.0055 |
8.183 |
1.90E-11 |
0.0342 |
0.0563 |
Get Answers For Free
Most questions answered within 1 hours.