Question

Let X1, X2, ... be i.i.d. r.v. and N an independent nonnegative integer valued r.v. Let...

Let X1, X2, ... be i.i.d. r.v. and N an independent nonnegative integer valued r.v. Let SN=X1 +...+ XN.
Assume that the m.g.f. of the Xi, denoted MX(t), and the m.g.f. of N, denoted MN(t) are finite in some interval (-δ, δ) around the origin.
1. Express the m.g.f. MS_N(t) of SN in terms ofMX(t) and MN(t).
2. Give an alternate proof of Wald's identity by computing the expectation E[SN] as M'S_N(0).
3. Express the second moment E[SN2] in terms of the moments of X and N.
4. Express the variance of SN in terms of the means and variances of X and N.

Homework Answers

Answer #1

a)

since X1, X2, ... be i.i.d. r.v. and N an independent nonnegative integer valued r.v. thus

b)  

thus satisfying the wald's identity  

c)

​​​​​​​

d)

Let me know if any part is not clear to you in comment section!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the...
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the CDF of Yn,Zn 2. What is E(Zn) 3. Show that the probability that Xi is the smallest one among X1,...,Xn is equal to ui/(u1+...+un)
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for (µ1µ2).
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ...
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ whose pdf is f(x|λ) = λ^(−1) exp(− x/λ), x > 0, λ > 0. (a) With X(1) = min{X1, . . . , Xn}, find an unbiased estimator of λ, denoted it by λ(hat). (b) Use Lehmann-Shceffee to show that ∑ Xi/n is the UMVUE of λ. (c) By the definition of completeness of ∑ Xi or other tool(s), show that E(λ(hat) |  ∑ Xi)...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance...
Let X1,X2...Xn be i.i.d. with N(theta, 1) a) find the CR Rao lower-band for the variance of an unbiased  estimator of theta b)------------------------------------of theta^2 c)-----------------------------------of P(X>0)
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) =...
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) = 7 and variance Var(Xi) = 9. Set Yn = X1 + X2 + · · · + Xn n (n = 1, 2, 3, . . .) (a) Find E(Y2) and E(Y5). (b) Find Cov(Y2, Y5). (c) Find E (Y2 | X1). (d) How should your answers from parts (a)–(c) be modified if the numbers “2”, “5”, “7” and “9” are replaced by m,...
Problem 5.10.10 Suppose you have n suitcases and suitcase i holds Xi dollars where X1, X2,...
Problem 5.10.10 Suppose you have n suitcases and suitcase i holds Xi dollars where X1, X2, …, Xn are iid continuous uniform (0, m) random variables. (Think of a number like one million for the symbol m.) Unfortunately, you don’t know Xi until you open suitcase i.             Suppose you can open the suitcases one by one, starting with suitcase n and going down to suitcase 1. After opening suitcase i, you can either accept or reject Xi dollars. If...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT