Question

interpret each coefficient estimate and discuss its significance using α = 0.01, α = 0.05 and...

interpret each coefficient estimate and discuss its significance using α = 0.01, α = 0.05 and α = 0.10. Use the concepts of strict and weak significance too

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.820140129
R Square 0.672629832
Adjusted R Square 0.658699186
Standard Error 235.4076294
Observations 50
ANOVA
df SS MS F Significance F
Regression 2 5351505.158 2675752.58 48.2841827 4.0125E-12
Residual 47 2604587.342 55416.752
Total 49 7956092.5
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 614.4212872 112.5236612 5.46037412 1.7469E-06 388.052879 840.789695 388.052879 840.789695
age -6.614685559 3.171208277 -2.0858566 0.0424457 -12.994334 -0.2350374 -12.994334 -0.2350374
features 119.4123809 15.91528909 7.50299792 1.4181E-09 87.394949 151.429813 87.394949 151.429813

Homework Answers

Answer #1

AGE:

p value = 0.0424457

α = 0.01

P value > α Do not reject

Not significant relatioship

α = 0.05

P value < α reject

significant relatioship but weak

α = 0.05

P value < α reject

significant relatioship but moderate

features:

P value = 1.4181E-09 = 0.00000

α = 0.01

P value < α reject

significant relatioship and strong

α = 0.05

P value < α reject

significant relatioship and strong

α = 0.1

P value < α reject

significant relatioship and strong

Hence for particular alpha both coefficient are significant but clearly features is much more significant then age in determining the variation in response variable.

F value = 0125E-12

Hence model overall is significant

Thanks in advance!

revert back for doubt

Please upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Discuss the strength and the significance of your regression model by using R-square and significance F...
Discuss the strength and the significance of your regression model by using R-square and significance F where α = 0.05. SUMMARY OUTPUT Regression Statistics Multiple R 0.919011822 R Square 0.844582728 Adjusted R Square 0.834446819 Standard Error 163.953479 Observations 50 ANOVA df SS MS F Significance F Regression 3 6719578.309 2239859.44 83.3257999 1.28754E-18 Residual 46 1236514.191 26880.7433 Total 49 7956092.5 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 21.7335244 114.2095971 0.19029508 0.84991523 -208.158471 251.62552...
Discuss the model and interpret the results: report overall model fit (t and significance), report the...
Discuss the model and interpret the results: report overall model fit (t and significance), report the slope coefficient and significance, report and interpret r squared. Regression Statistics Multiple R 0.001989374 R Square 3.95761E-06 Adjusted R Square -0.005046527 Standard Error 8605.170404 Observations 200 ANOVA df SS MS F Significance F Regression 1 58025.4985 58025.4985 0.00078361 0.977695901 Residual 198 14661693620 74048957.68 Total 199 14661751645 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 15668.85874 2390.079111 6.555790838...
Compare the two regression models. Does it make sense that spending and household debt could each...
Compare the two regression models. Does it make sense that spending and household debt could each be predicted by annual household income? Why or why not? 1. Predicting spending by household income Regression Statistics Multiple R 0.859343186 R Square 0.738470711 Adjusted R Square 0.737149856 Standard Error 1602.157625 Observations 200 ANOVA df SS MS F Significance F Regression 1 1435121315 1435121315 559.085376 1.42115E-59 Residual 198 508247993.2 2566909.056 Total 199 1943369308 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and the p-value of the model and the coefficients individually. SUMMARY OUTPUT Regression Statistics Multiple R 0.19476248 R Square 0.037932424 Adjusted R Square 0.035147858 Standard Error 12.09940236 Observations 694 ANOVA df SS MS F Significance F Regression 2 3988.511973 1994.255986 13.62238235 1.5759E-06 Residual 691 101159.3165 146.3955376 Total 693 105147.8284 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 27.88762549...
True or false: at the 5% level of confidence the intercept is significantly different from zero?...
True or false: at the 5% level of confidence the intercept is significantly different from zero? SUMMARY OUTPUT Regression Statistics Multiple R 0.98711 R Square 0.974387 Adjusted R Square 0.965849 Standard Error 47.4523 Observations 9 ANOVA df SS MS F Significance F Regression 2 513960.7 256980.4 114.1262 1.68E-05 Residual 6 13510.32 2251.72 Total 8 527471.1 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -100.805 48.43281 -2.08133 0.082583 -219.316 17.70612 -219.316 17.70612 Well Depth...
Can weight of a vehicle significantly predict fuel economy? How can you tell? (Include statistic and...
Can weight of a vehicle significantly predict fuel economy? How can you tell? (Include statistic and level of significance/p value) Write an APA statement with the findings from this regression analysis. Regression Statistics Multiple R 0.045643559 R Square 0.002083334 Adjusted R Square -0.05335648 Standard Error 10.03995374 Observations 20 ANOVA df SS MS F Significance F Regression 1 3.78791868 3.78791868 0.037578 0.848463 Residual 18 1814.41208 100.800671 Total 19 1818.2 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%...
Using this regression model below that I created to, interpret the slope estimates, that is interpret...
Using this regression model below that I created to, interpret the slope estimates, that is interpret the impact that income [per capita gross national income] has on U5MR [No. of deaths of children 0-5 years old, per 1000 live births]. Then interpret the r square [for example what % of the variation can be explained by the other variable]. Lastly calculate the predicted values of U5MR when income = $10,000. Regression Statistics Multiple R 0.443388 R Square 0.196593 Adj R...
Y^ = b0 + b1X1 +b2X2/1 Interpret the value of R2 obtained using the equation above....
Y^ = b0 + b1X1 +b2X2/1 Interpret the value of R2 obtained using the equation above. SUMMARY OUTPUT Regression Statistics Multiple R 0.970383 R Square 0.941644 Adjusted R Square 0.928676 Standard Error 134.4072 Observations 12 ANOVA df SS MS F Significance F Regression 2 2623543 1311772 72.61276 2.8E-06 Residual 9 162587.7 18065.3 Total 11 2786131 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 707.4747 230.4927 3.069402 0.013367 186.0641 1228.885 X Variable 1 -7.39221 7.03366 -1.05098 0.320669 -23.3035...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
Identify and interpret the F test (one paragraph): Using the p-value approach, is the null hypothesis...
Identify and interpret the F test (one paragraph): Using the p-value approach, is the null hypothesis for the F test rejected or not rejected? Why or why not? Interpret the implications of these findings for the model. SUMMARY OUTPUT Regression Statistics Multiple R 0.60 R Square 0.36 Adjusted R Square 0.26 Standard Error 9.25 Observations 30.00 ANOVA df SS MS F Significance F Regression 4.00 1212.46 303.12 3.54 0.02 Residual 25.00 2139.14 85.57 Total 29.00 3351.60 Coefficients Standard Error t...