Question

2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and...

2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and sigma^2 y. Let Z = 1/2(X + Y) and W =1/2 (X - Y) a. Find the joint pdf fz, w(z, w). b. Find the marginal pdf f(z). c. Are Z and W independent?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero...
The random variables, X and Y , have the joint pmf f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise. 1. Find the constant, c, such that f(x,y) is a valid pmf. 2. Find the marginal distributions for X and Y . 3. Find the marginal means for both random variables. 4. Find the marginal variances for both random variables. 5. Find the correlation of X and Y . 6. Are the two variables independent? Justify.
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1)...
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1) Let Z = X + Y Find the PDF of Z, fZ(z) by first obtaining the CDF FZ(z) using the following steps: (a) Draw an x-y axis plot, and sketch on this plot the lines z=0.5, z=1, and z=1.5 (remembering z=x+y) (b) Use this plot to obtain the function which describes the area below the lines for z = x + y in terms...
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero...
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero elsewhere a)Are X and Y discrete or continuous random variables? b)Construct and joint probability distribution table by writing these probabilities in a rectangular array, recording each marginal pmf in the "margins" c)Determine if X and Y are Independent variables d)Find P(X>Y) e)Compute E(X), E(Y), E(X^2) and E(XY) f)Compute var(X) g) Compute cov(X,Y)
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y,...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y, 0 < x< 1, 0 < y< 1. Let W = max(X,Y). Find EW.
Let X and Y be independent random variables, with X following uniform distribution in the interval...
Let X and Y be independent random variables, with X following uniform distribution in the interval (0, 1) and Y has an Exp (1) distribution. a) Determine the joint distribution of Z = X + Y and Y. b) Determine the marginal distribution of Z. c) Can we say that Z and Y are independent? Good
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.