Question

The real estate profession is interested in understanding how the rent (??1) and the cost to...

The real estate profession is interested in understanding how the rent (??1) and the cost to hold a one-bedroom apartment (?2) affect the price of the one-bedroom apartment (y). He fits the model as:

? = ?0 + ?1?1 + ?2?2

Coefficients:

Estimate

Std. Error

t value

Pr ( >|t|)

(Intercept)

176.27867

23.36940

7.543

<1.23e-9 ***

rent

0.55701

0.07114

7.830

<4.58e-10 ***

cost

0.35332

0.10118

3.492

< 0.00105 ***

Signif. codes:      0 ‘***’           0 ‘**’           0.01‘*’           0.05 ‘.’           0.1 ‘ ’              1

Residual standard error: 2.559 on 47 degrees of freedom

Multiple R-squared: 0.9994       Adjusted R-squared: 0.9994

F-statistic: 4.16e04 on 2 and 47 DF    p-value: < 2.2e-16

  1. By using the above table, show how do we obtain the t-value for each coefficients.
  2. Shall we remove the factor cost and/or rent based on its significance and why?
  3. Which p-value corresponding to the testing of the overall significance of the model, and is it significance?

Homework Answers

Answer #1

a)

t value for Intercept = 176.27867/ 23.36940 = 7.543

t value for rent = 0.55701/ 0.07114 = 7.830

t value for cost = 0.35332/ 0.10118 = 3.492

b)

For Rent:

As p-value < 0.05, we reject the null hypothesis.

It is significant. We will not remove rent.

For cost:

As p-value < 0.05, we reject the null hypothesis.

It is significant. We will not remove cost.

c)

P-value for overall model = 2.2e-16

As p-value < 0.05, we reject the null hypothesis.

The overall model is significant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf + HML + SMB + SMB2) Residuals:      Min       1Q   Median       3Q      Max -10.1560 -0.6880 -0.0254 0.6660 21.9700 Coefficients:             Estimate Std. Error t value Pr(>|t|)    (Intercept) -0.01163    0.02800 -0.415    0.678    Mktrf        1.25614    0.02389 53.540 <2e-16 *** HML          2.01719    0.04238 47.602   <2e-16 *** SMB         -0.05150    0.04769 -1.080    0.280    SMB2         0.03180    0.03545   0.897    0.372 --- Signif. codes: 0 ‘***’ 0.001...
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:         &nbs
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 1.311e+02 2.219e+02   0.591   0.5550    debt         1.283e-01 3.288e-01   0.390   0.6966    sales        2.942e-01 1.366e-01   2.154   0.0321 * income       1.546e+01 2.697e+00   5.730 2.42e-08 *** assets      -2.390e-05 4.839e-03 -0.005   0.9961    seo          2.973e+02 2.627e+02   1.132   0.2587    --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2019 on 303 degrees of freedom Multiple R-squared: 0.258,   Adjusted...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy) Residuals:     Min      1Q Median      3Q     Max -258.24 -105.23   23.29 116.06 174.73 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) -240.8429    36.6769 -6.567 1.46e-10 *** launch_speed    4.8800     0.4022 12.134 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 122.4 on 438 degrees of freedom Multiple R-squared: 0.2516, Adjusted R-squared: 0.2499 F-statistic:...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and domestic vs foreign manufacturer to predict mileage: ------------------------------------------------------------------------------------------------------ > summary(lm(highwaympg~displacement+hp+weight+domestic)) Call: lm(formula = highwaympg ~ displacement + hp + weight + domestic) Residuals:     Min      1Q  Median      3Q     Max -6.9530 -1.6997 -0.1708 1.6452 11.4028 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 53.849794   2.090657 25.757 < 2e-16 *** displacement 1.460873   0.748837   1.951   0.0543 . hp           -0.009802   0.011356 -0.863   0.3904    weight       -0.008700   0.001094 -7.951 6.23e-12 *** domestic     -0.939918   0.762175 -1.233   0.2208    ---...
R Linear Model Summary. Based on the R output below, answer the following: (a) What can...
R Linear Model Summary. Based on the R output below, answer the following: (a) What can infer about β0 and/or β1 ? (b) What is the interpretation of R2 . (Non-Adjusted) ? In particular, what does it say about how “x explains y” (c) Perform the test (α = 0.05): H0 : ρ = 0.5; Ha : ρ > 0.5 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.32632 0.24979 1.306 0.194 x 0.09521 0.01022 9.313 2.93e-15 *** --- Signif....
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths +...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training) Residuals: Min 1Q Median 3Q Max -2.17695 -0.23519 -0.00112 0.26471 1.02810 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.630e+00 2.017e-01 47.756 < 2e-16 *** Lot.Size -2.107e-06 3.161e-07 -6.666 4.78e-11 *** Square.Feet 2.026e-04 3.021e-05 6.705 3.71e-11 *** Num.Baths 6.406e-02 2.629e-02 2.437 0.015031 * dis_coast -1.827e-05 6.881e-06 -2.655 0.008077 ** API.2011 3.459e-03 2.356e-04...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data = Lab5, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -582.66 -274.75 13.53 273.92 589.06 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 385.362 77.360 4.981 8.72e-07 *** fin_loss 3.248 1.523 2.133 0.0334 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 316.6 on 498 degrees of freedom Multiple R-squared: 0.009052,   Adjusted R-squared:...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...