Question

it is known that the probability p of tossing heads on an unbalanced coin is either...

it is known that the probability p of tossing heads on an unbalanced coin is either 1/4 or 3/4. the coin is tossed twice and a value for Y, the number of heads, is observed. for each possible value of Y, which of the two values for p (1/4 or 3/4) maximizes the probabilty the Y=y? depeding on the value of y actually observed, what is the MLE of p?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A penny, which is unbalanced so that the probability of heads is 0.40, is tossed twise....
A penny, which is unbalanced so that the probability of heads is 0.40, is tossed twise. What is the covariance of Z, the number of heads obtained on the first toss, and W, the total number of heads in the two tosses of the coin?
A penny which is unbalanced so that the probability of heads is 0.4 is tossed twice....
A penny which is unbalanced so that the probability of heads is 0.4 is tossed twice. Let     Z be the number of heads obtained in the first toss. Let W be the total number of heads     obtained in the two tosses of the coin. a)Calculate the correlation coefficient between Z and W b)Show numerically that Cov(Z, W) = VarZ c)Show without using numbers that Cov(Z, W) = VarZ
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
Let p denote the probability that a particular coin will show heads when randomly tossed. It...
Let p denote the probability that a particular coin will show heads when randomly tossed. It is not necessarily true that the coin is a “fair” coin wherein p=1/2. Find the a posteriori probability density function f(p|TN ) where TN is the observed number of heads n observed in N tosses of a coin. The a priori density is p~U[0.2,0.8], i.e., uniform over this interval. Make some plots of the a posteriori density.
The probability with which a coin shows heads upon tossing is p. The random variable X1...
The probability with which a coin shows heads upon tossing is p. The random variable X1 takes the values 1 and 0 if the outcome of the "first toss is heads or tails respectively; another random variable X2 is defined in the same way based on the second toss. (a) Is X1-X2 a sufficient statistic for p? Show the work. (b) Is X1+X2 a sufficient estimator for p? Show the work.
We toss n coins and each one shows up heads with probability p, independent of the...
We toss n coins and each one shows up heads with probability p, independent of the other coin tosses. Each coin which shows up heads is tossed again. What is the probability mass function of the number of heads obtained after the second round of coin tossing?
Assume p represents the probability that a particular coin will show heads when randomly tossed. Don't...
Assume p represents the probability that a particular coin will show heads when randomly tossed. Don't assume its true that the coin is a “fair” coin wherein p=1/2. Determine the a posteriori probability density function f(p|TN) where TN is the observed number of heads n observed in N tosses of a coin. The a priori density is p~U[0.2,0.8], i.e., uniform over this interval. Create some plots of the a posteriori density.
An unfair coin is such that on any given toss, the probability of getting heads is...
An unfair coin is such that on any given toss, the probability of getting heads is 0.6 and the probability of getting tails is 0.4. The coin is tossed 8 times. Let the random variable X be the number of times heads is tossed. 1. Find P(X=5). 2. Find P(X≥3). 3. What is the expected value for this random variable? E(X) = 4. What is the standard deviation for this random variable? (Give your answer to 3 decimal places) SD(X)...
Consider an experiment of tossing two coins three times. Coin A is fair but coin B...
Consider an experiment of tossing two coins three times. Coin A is fair but coin B is not with P(H)= 1/4 and P(T)= 3/4. Consider a bivariate random variable (X,Y) where X denotes the number of heads resulting from coin A and Y denotes the number of heads resulting from coin B. (a) Find the range of (X,Y) (b) Find the joint probability mass function of (X,Y). (c) Find P(X=Y), P(X>Y), P(X+Y<=4). (d) Find the marginal distributions of X and...
A coin is tossed 10 times to test the hypothesis (?0) that the probability of heads...
A coin is tossed 10 times to test the hypothesis (?0) that the probability of heads is ½ versus the alternative that the probability is not ½. A test is defined by: reject ?0 if either 0 or 10 heads are observed. a. What is the significance level of the test? b. If in fact the probability of heads is 0.1, what is the power, (1 − ?), of the test?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT