Question

Estimate: Price = β0 + β1Sqft + β2Beds + β2Baths + ε, where Price, Sqft, Beds,...

Estimate: Price = β0 + β1Sqft + β2Beds + β2Baths + ε, where Price, Sqft, Beds, and Baths refer to home price, square footage, number of bedrooms, and number of bathrooms, respectively.

Price Sqft Beds Baths Col
840000 2768 4 3.5 1
822000 2500 4 2.5 1
713000 2400 3 3 1
689000 2200 3 2.5 1
685000 2716 3 3.5 1
645000 2524 3 2 1
625000 2732 4 2.5 0
620000 2436 4 3.5 1
587500 2100 3 1.5 1
585000 1947 3 1.5 1
583000 2224 3 2.5 1
569000 3262 4 2 0
546000 1792 3 2 0
540000 1488 3 1.5 0
537000 2907 3 2.5 0
516000 1951 4 2 1
511000 1752 3 1.5 1
510000 1727 3 2 1
495000 1692 3 2 0
463000 1714 3 2 0
457000 1650 3 2 0
451000 1685 3 2 0
435000 1500 3 1.5 1
431700 1896 2 1.5 0
414000 1182 2 1.5 0
401500 1152 3 1 0
399000 1383 4 1 0
380000 1344 4 2 0
380000 1272 3 1 0
375900 2275 5 1 0
372000 1005 2 1 0
367500 1272 3 1 0
356500 1431 2 2 1
330000 1362 3 1 0
330000 1465 3 1 0
307500 850 1 1 0

a. Use R’s predict() function to construct the 95% confidence interval for the expected price of a 2,500-square-foot home in Arlington, Massachusetts, with three bedrooms and two bathrooms. (Round answers to 2 decimal places.)

Confidence interval:

b. Use R’s predict() function to construct the corresponding prediction interval for an individual home. (Round answers to 2 decimal places.)

Prediction interval:

Homework Answers

Answer #1


data = read.table("../chandan/Documents/Tutoring/random data /price",header=T)
model <- lm(Price~Sqft+Beds+Baths,data = data)
summary(model)
predict(model,data.frame(Sqft=2500,Beds=3,Baths=2),interval="confidence")

fit      lwr      upr
1 578704.6 528486.5 628922.7

a)

95% confidence interval is

(528486.5,628922.7)

b)

for prediction interval

predict(model,data.frame(Sqft=2500,Beds=3,Baths=2),interval="prediction")
       fit      lwr      upr
1 578704.6 417921.6 739487.7

95% prediction interval is

(417921.6,739487.7)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Estimate: Price = β0 + β1Sqft + β2Beds + β2Baths + ε, where Price, Sqft, Beds,...
Estimate: Price = β0 + β1Sqft + β2Beds + β2Baths + ε, where Price, Sqft, Beds, and Baths refer to home price, square footage, number of bedrooms, and number of bathrooms, respectively. Price,Sqft,Beds,Baths,Col 840000,2768,4,3.5,1 822000,2500,4,2.5,1 713000,2400,3,3,1 689000,2200,3,2.5,1 685000,2716,3,3.5,1 645000,2524,3,2,1 625000,2732,4,2.5,0 620000,2436,4,3.5,1 587500,2100,3,1.5,1 585000,1947,3,1.5,1 583000,2224,3,2.5,1 569000,3262,4,2,0 546000,1792,3,2,0 540000,1488,3,1.5,0 537000,2907,3,2.5,0 516000,1951,4,2,1 511000,1752,3,1.5,1 510000,1727,3,2,1 495000,1692,3,2,0 463000,1714,3,2,0 457000,1650,3,2,0 451000,1685,3,2,0 435000,1500,3,1.5,1 431700,1896,2,1.5,0 414000,1182,2,1.5,0 401500,1152,3,1,0 399000,1383,4,1,0 380000,1344,4,2,0 380000,1272,3,1,0 375900,2275,5,1,0 372000,1005,2,1,0 367500,1272,3,1,0 356500,1431,2,2,1 330000,1362,3,1,0 330000,1465,3,1,0 307500,850,1,1,0 a. Use R’s predict() function to construct the 95% confidence interval...
A realtor in Arlington, Massachusetts, is analyzing the relationship between the sale price of a home...
A realtor in Arlington, Massachusetts, is analyzing the relationship between the sale price of a home (Price in $), its square footage (Sqft), the number of bedrooms (Beds), and the number of bathrooms (Baths.) She collects data on 36 sales in Arlington in the first quarter of 2009 for the analysis. A portion of the data is shown in the accompanying table. Price Sqft Beds Baths 840000 2768 4 3.5 822000 2500 4 2.5 713000 2400 3 3.0 689000 2200...
A realty company in Phoenix, Arizona is interested in analyzing how the square footage (Sqft), number...
A realty company in Phoenix, Arizona is interested in analyzing how the square footage (Sqft), number of bedrooms (Bedrooms), and number of bathrooms (Bathrooms) affects a home’s sales price in dollars (Price). They collected data on homes that recently sold using Truilia.com and Zillow.com and used it to obtain the following estimated regression equation: Priceˆ=97,348.27+112.12Sqft+7,589.20Bedrooms+4,056.98Bathrooms A recent home in the Phoenix area sold for $290,000. It was 1500 square feet, had 2 bedrooms, and 1.5 bathrooms. Use this information to...
Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s score on the...
Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s score on the math portion of the Graduate Record Examination (GRE) score and GPA is the student’s grade point average in graduate school. GPA GRE 3.9 690 3.2 740 3.1 740 2.7 650 2.5 700 2.9 640 2.7 710 2.9 700 2.1 760 2.3 670 3.6 750 2.5 700 3.4 650 3.9 690 3.3 700 2.7 680 3.8 660 2.6 660 3.9 710 3.8 760 3 690...
A realty company in Phoenix, Arizona is interested in analyzing how the square footage (Sqft), and...
A realty company in Phoenix, Arizona is interested in analyzing how the square footage (Sqft), and number of bedrooms (Bedrooms) influence a home’s sales price in dollars (Price). They collected data on homes that recently sold using Truilia.com and Zillow.com and used it to obtain the following estimated regression equations: Model 1:  Priceˆ=44328.28 + 67.12Sqft + 5,589.20Bedrooms, Se = 4,450, R2 = 0.25 Model 2: ln(Price)ˆ=11.02 + 0.0005Sqft + 0.0910 Bedrooms, Se =0.276 , R2 = 0.288 Model 3: Priceˆ=77,958.20+8,952ln(Sqft)+7,588.99Bedrooms,Se =...
Create the Descriptive Statistics for "Price" and "SQFT" - Include a 95% Confidence Test on the...
Create the Descriptive Statistics for "Price" and "SQFT" - Include a 95% Confidence Test on the Population Mean Produce a Scatterplot for Price (Dependent) and SQFT (Independent) (PLACE BELOW) Conduct a 95% Hypothesis Test (i.e., ? = .05) to determine if the Mean Price of Houses is greater than $242,512. Use a Population Standard Deviation of $172,000 for your Z-test (i.e., we are determing if the mean has increased from the previous year). Answers From the Scatterplot (placed below), is...
Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s score on the...
Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s score on the math portion of the Graduate Record Examination (GRE) score and GPA is the student’s grade point average in graduate school. [You may find it useful to reference the t table.] a. Construct the 90% confidence interval for the expected GPA for an individual who scored 710 on the math portion of the GRE. (Round regression estimates to at least 4 decimal places, "tα/2,df" value...
Exercise 15-41 Algo Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s...
Exercise 15-41 Algo Estimate: GPA = β0 + β1GRE + ε, where GRE is a student’s score on the math portion of the Graduate Record Examination (GRE) score and GPA is the student’s grade point average in graduate school. [You may find it useful to reference the t table.] a. Construct the 90% confidence interval for the expected GPA for an individual who scored 730 on the math portion of the GRE. (Round regression estimates to at least 4 decimal...
the owner of a fitness center is interested in estimating the difference in mean years that...
the owner of a fitness center is interested in estimating the difference in mean years that female members have been with the club compared with male members. he wishes to develop a 99% confidence interval estimate. The data are showen in the accompanying table. Assuming that the same data are approximately normal and that the two populations have equal variances, develop and interpret the confidence interval estimate. dicuss the results gender 1=male 2=female 1 2 2 2 1 2 2...
Price    Bedrooms        Square Feet      Pool     Distance           Township     &n
Price    Bedrooms        Square Feet      Pool     Distance           Township         Garage Baths 245,400           2          2100    0          12        1          1          2 221,100           3          2300    0          18        1          0          1.5 232,200           3          1900    0          16        1          1          1.5 198,300           4          2100    0          19        1          1          1.5 192,600           6          2200    0          14        1          0          2 147,400           6          1700    0          12        1          0          2 224,000           3          1900    0          6          1          1          2 220,900           2          2300    0          12        1          1          2 199,000           3          2500    0          18        1          0         ...