Question

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (Note:...

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (Note: the automated question following this one will ask you confidence interval questions for this same data, so jot down your work.)

H0: μ1μ2 = 0
HA: μ1μ2 ≠ 0
   x−1x−1 = 74 x−2x−2 = 65
  σ1 = 1.57 σ2 = 14.10
  n1 = 19 n2 = 19
a-1.

Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round intermediate calculations to 4 decimal places and final answer to 2 decimal places.)

  Test statistic   
a-2. Calculate the p-value of the test statistic. Remember: because this is a two-tailed hypothesis test, you must double your p-value that will be compared with α in the hypothesis test criteria. (Round your answer to 4 decimal places.)
  p-value   
a-3. Do you reject the null hypothesis at the 5% level?
  • No, since the p-value is more than α.

  • No, since the p-value is less than α.

  • Yes, since the p-value is more than α.

  • Yes, since the p-value is less than α.

  b. Using the critical value approach, can we reject the null hypothesis at the 5% level?
  • No, since the value of the test statistic is not less than the critical value of-1.645.

  • No, since the value of the test statistic is not less than the critical value of -1.96.

  • Yes, since the value of the test statistic is less than the critical value of -1.645.

  • Yes, since the value of the test statistic is less than the critical value of -1.96.

Homework Answers

Answer #1

Hope this will help you. Thank you :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 75 x−2x−2 = 79 σ1 = 11.10 σ2 = 1.67 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 57 x−2x−2 = 63 σ1 = 11.5 σ2 = 15.2 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 68 x−2x−2 = 80 σ1 = 12.30 σ2 = 1.68 n1 = 15 n2 = 15 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Sample...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Sample 1 Sample 2 11.2 11.4 11.5 12.1 7.7 12.7 10.7 10.2 10.2 10.2 9.1 9.9 9.3 10.9 11.6 12.7 a. Construct the relevant hypotheses to test if the mean of the second population is greater than the mean of the first population. a) H0: μ1 − μ2 = 0; HA: μ1 − μ2 ≠ 0 b) H0: μ1 − μ2 ≥ 0; HA: μ1...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Use...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Use Table 2. Sample 1 Sample 2 11.0 9.3 10.8 11.9 7.3 12.5 12.5 11.4 10.6 9.7 9.8 10.0 7.2 12.6 10.5 12.7 Click here for the Excel Data File a. Construct the relevant hypotheses to test if the mean of the second population is greater than the mean of the first population. H0: μ1 − μ2 = 0; HA: μ1 − μ2 ≠ 0...
Consider the following sample data drawn independently from normally distributed populations with unknown but equal population...
Consider the following sample data drawn independently from normally distributed populations with unknown but equal population variances. (You may find it useful to reference the appropriate table: z table or t table) Sample 1 Sample 2 12.1 8.9 9.5 10.9 7.3 11.2 10.2 10.6 8.9 9.8 9.8 9.8 7.2 11.2 10.2 12.1 Click here for the Excel Data File a. Construct the relevant hypotheses to test if the mean of the second population is greater than the mean of the...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2 = 0.20 HA : P1− P2 ≠ 0.20   x1 = 150 x2 = 130   n1 = 250 n2 = 400 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)   Test statistic    b. Approximate the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 246 x−2x−2 = 250 s1 = 26 s2 = 22 n1 = 8 n2 = 8 a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 232 x−2x−2 = 259 s1 = 30 s2 = 20 n1 = 6 n2 = 6 a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 267 x−2x−2 = 295 s1 = 37 s2 = 31 n1 = 11 n2 = 11 Test Statistics:
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT