Question

2) Let X and Y have the following joint density: f(x, y) = 2e^( −y) ,...

2) Let X and Y have the following joint density: f(x, y) = 2e^( −y) , x > 0, y > 2x, 0, otherwise. Give the value of Cov (X, Y ). (Note: You can make use of the marginal pdfs of X and Y given in the HW 9 assignment and solutions. You don’t have to derive them in your solutions for this assignment (although it’ll be good practice to derive them on scratch paper). Also, as a check of your work, I’ll give you that the correlation is strictly between 2/3 and 3/4 (but in order to make use of this check, you’d have to use the two marginal pdfs to obtain the values of σX and σY .)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variables X and Y have a joint density function given by f(x, y) =...
The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < ∞, 0 ≤ y ≤ x , otherwise. (a) Compute Cov(X, Y ). (b) Find E(Y | X). (c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ). How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?
Suppose that X and Y have joint probability density function given by: f(x, y) = 2...
Suppose that X and Y have joint probability density function given by: f(x, y) = 2 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ x. What is Cov(X, Y )?
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤...
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 otherwise, where c is a positive constant. Compute the marginal densities of X and of Y (be explicit about all cases!). Compute P(Y + 2X < 1). Determine whether X and Y are independent. Justify your answer.
Let X and Y have a joint density function given by f(x; y) = 3x; 0...
Let X and Y have a joint density function given by f(x; y) = 3x; 0 <= y <= x <= 1 (a) Find P(X<2Y). (b) Find cov(X,Y). (c) Find P(X < 1/2 |Y = 1/3). (d) Find P(X = 1/2|Y = 1/3). (e) Find P(X > 1/2|Y > 1/3). (f) Find the conditional expectation E(X|Y = y).
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0,...
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0, y > 0, x + y ≤ 1 and 0 otherwise. a) Find marginal pdf’s of X and of Y. b) Find covariance Cov(X,Y). c) Find correlation Corr(X,Y). What you can say about the relationship between X and Y?
Suppose X and Y are continuous random variables with joint density function f(x,y) = x +...
Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
How do you solve - let X & Y be random variables of the continuous type...
How do you solve - let X & Y be random variables of the continuous type having the joint pdf f(x,y)=2, 0≤y≤x≤1 find the marginal PDFs of X & Y Compute μx, μy, var(x), var(y), Cov(X,Y), and ρ
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x...
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?