Question

Let X and Y be independent exponential random variables with respective rates ? and ? Is...

Let X and Y be independent exponential random variables with respective rates ? and ? Is max(X, Y ) an exponential random variable?

Homework Answers

Answer #1

Answer:

Given that:

Let X and Y be independent exponential random variables with respective rates ? and ? Is max(X, Y ) an exponential random variable?

Given ,  

Let Z = min(X,Y)

To find distribution of Z ,we find cdf of Z

   X and Y are independent

  

cdf of Z has exactly the form of cdf exponential distribution

variable Z is also a exponential i,e min(X,Y) is a exponential variable.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a)....
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a). Find the cdf and density of Z = X/Y . b). Compute P(X < Y ). c). Find the cdf and density of W = min{X,Y }.
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).
Assume that X and Y are independent random variables, each having an exponential density with parameter...
Assume that X and Y are independent random variables, each having an exponential density with parameter λ. Let Z = |X - Y|. What is the density of Z?
Problem 0.1 Suppose X and Y are two independent exponential random variables with respective densities given...
Problem 0.1 Suppose X and Y are two independent exponential random variables with respective densities given by(λ,θ>0) f(x) =λe^(−xλ) for x>0 and g(y) =θe^(−yθ) for y>0. (a) Show that Pr(X<Y) =∫f(x){1−G(x)}dx {x=0, infinity] where G(x) is the cdf of Y, evaluated at x [that is,G(x) =P(Y≤x)]. (b) Using the result from part (a), show that P(X<Y) =λ/(θ+λ). (c) You install two light bulbs at the same time, a 60 watt bulb and a 100 watt bulb. The lifetime of the...
X and Y are independent variables, with X having a uniform (0,1) distribution and Y being...
X and Y are independent variables, with X having a uniform (0,1) distribution and Y being an exponential random variable with a mean of 1. Given this information, find P(max{X,Y} > 1/2)
Let X and Y be two independent exponential random variables. Denote X as the time until...
Let X and Y be two independent exponential random variables. Denote X as the time until Bob comes with average waiting time 1/lamda (lambda > 0). Denote Y as the time until Gary comes with average waiting time 1/mu (mu >0). Let S be the time before both of them come. a) What is the distribution of S? b) Derive the probability mass function of T defined by T=0 if Bob comes first and T=1 if Gary comes first. c)...
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and...
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and λ = 2. Find the conditional distribution of X, given that X + Y = 5. What distribution is this?
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find...
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find the distribution of Z = min{X1, X2}.
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find...
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find the distribution of Z = min{X1, X2}.
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X...
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X + Y. The probability that Z is less than or equal to 3 is: